Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L. a. Calculate the work done, and indicate the correct sign. b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign. c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain. 7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function? a. Explain how you know that work is not a state function. b. Why does the work increase with an increase in the number of steps? c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L. a. Calculate the work done, and indicate the correct sign. b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign. c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain. 7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function? a. Explain how you know that work is not a state function. b. Why does the work increase with an increase in the number of steps? c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
Solution Summary: The author explains that the work is a path function in thermodynamics.
Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L.
a. Calculate the work done, and indicate the correct sign.
b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign.
c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain.
7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function?
a. Explain how you know that work is not a state function.
b. Why does the work increase with an increase in the number of steps?
c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following
compounds. Please show your work. (8) SF2, CH,OH, C₂H₂
b) Based on your answers given above, list the compounds in order of their Boiling Point
from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road-
maps to see how the combined reactions allow you to "navigate" between the different
functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18
roadmaps along with your new Chapter 19 roadmap for these.
(a)
1. BHS
2. H₂O₂
3. H₂CrO4
4. SOCI₂
(b)
1. Cl₂/hv
2. KOLBU
3. H₂O, catalytic H₂SO4
4. H₂CrO4
Reaction
Roadmap
An alkene 5. EtOH
6.0.5 Equiv. NaOEt/EtOH
7. Mild H₂O
An alkane
1.0
2. (CH3)₂S
3. H₂CrO
(d)
(c)
4. Excess EtOH, catalytic H₂SO
OH
4. Mild H₂O*
5.0.5 Equiv. NaOEt/EtOH
An alkene 6. Mild H₂O*
A carboxylic
acid
7. Mild H₂O*
1. SOC₁₂
2. EtOH
3.0.5 Equiv. NaOEt/E:OH
5.1.0 Equiv. NaOEt
6.
NH₂
(e)
1. 0.5 Equiv. NaOEt/EtOH
2. Mild H₂O*
Br
(f)
i
H
An aldehyde
1. Catalytic NaOE/EtOH
2. H₂O*, heat
3. (CH,CH₂)₂Culi
4. Mild H₂O*
5.1.0 Equiv. LDA
Br
An ester
4. NaOH, H₂O
5. Mild H₂O*
6. Heat
7.
MgBr
8. Mild H₂O*
7. Mild H₂O+
Li+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water?
Group of answer choices
LiBr
LiI
LiF
LiCl
Chapter 6 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY