
(a)
To express two vectors in unit vector notation.
(a)

Answer to Problem 67P
The two vectors in unit vector notation is
Explanation of Solution
Write the expression for force from Figure P6.67.
Simplify the above equation.
Write the expression for force from Figure P6.67.
Simplify the above equation.
Conclusion:
Therefore, the two vectors in unit vector notation is
(b)
The total force exerted on the object.
(b)

Answer to Problem 67P
The total force exerted on the object is
Explanation of Solution
Write the total force exerted on the object.
Use equation (I) and (II) in equation (III), to find the net force.
Conclusion:
Therefore, the total force exerted on the object is
(c)
The acceleration of the object.
(c)

Answer to Problem 67P
The acceleration of the object is
Explanation of Solution
Write the expression for acceleration of the object.
Here,
Use equation (IV) in (V).
Given that the mass of the object is
Rearrange the above equation.
Conclusion:
Therefore, the acceleration of the object is
(d)
The velocity of the object.
(d)

Answer to Problem 67P
The velocity of the object is
Explanation of Solution
Write the velocity of the object.
Here,
Conclusion:
Substitute
Therefore, the velocity of the object is
(e)
The position of the object at time
(e)

Answer to Problem 67P
The position of the object at
Explanation of Solution
Given that the initial position of the object is zero.
Write the expression for position using equation of motion.
Here,
Conclusion:
Substitute
Therefore, the position of the object at
(f)
The final kinetic energy of the object.
(f)

Answer to Problem 67P
The final kinetic energy of the object is
Explanation of Solution
Write the expression for kinetic energy.
Here,
From subpart (d) the final velocity vector is given by
Write the magnitude of final velocity vector.
Conclusion:
Substitute
Therefore, the final kinetic energy of the object is
(g)
The final kinetic energy of the object using the equation
(g)

Answer to Problem 67P
The final kinetic energy of the object using the equation
Explanation of Solution
Write the expression for kinetic energy.
From subpart (b) the net force
Apply the above condition in equation (XII).
Conclusion:
Substitute
Therefore, the final kinetic energy of the object using the equation
(h)
To compare the answers in subpart (f) and subpart (g).
(h)

Answer to Problem 67P
The answers in subpart (f) and subpart (g) is same, and it proves that the work energy theorem is consistent with the newton’s second law of motion.
Explanation of Solution
From subpart (f) and (g), the kinetic energy is obtained as
The work energy theorem states that the change in kinetic energy is equal to the external work done, and by rearranging the terms the final kinetic energy of the object is obtained in subpart (g).
Since the answers in subpart (g) and (f) are same, which proves that the work energy theorem is consistent with the newton’s second law of motion.
Conclusion:
Therefore, the answers in subpart (f) and subpart (g) is same, and it proves that the work energy theorem is consistent with the newton’s second law of motion.
Want to see more full solutions like this?
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





