Connect for Chemistry
Connect for Chemistry
13th Edition
ISBN: 9781260161854
Author: Raymond Chang, Jason Overby
Publisher: Mcgraw-hill Higher Education (us)
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.76QP

Hydrazine, N2H4, decomposes according to the following reaction:

3 N 2 H 4 ( l ) 4 NH 3 ( g ) + N 2 ( g )

(a) Given that the standard enthalpy of formation of hydrazine is 50.42 kJ/mol, calculate ΔH° for its decomposition. (b) Both hydrazine and ammonia burn in oxygen to produce H2O(l) and N2(g). Write balanced equations for each of these processes and calculate ΔH° for each of them. On a mass basis (per kg), would hydrazine or ammonia be the better fuel?

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The standard enthalpy of decomposition of Hydrazine has to be calculated. The equation has to be balanced and ΔH° has to be calculated in mass per kilogram for each of them and better fuel has to be identified.

Concept Introduction:

The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (ΔHf°).  The standard enthalpy of formation is used to determine the standard enthalpies of compound and element.

The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.

The equation for determining the standard enthalpies of compound and element can be given by,

ΔH°reaction=nΔH°f(products)-mΔH°f(reactants)

Answer to Problem 6.76QP

The standard enthalpy ΔH° for Hydrazine decomposition is -336.5kJmol-1

Explanation of Solution

Standard enthalpy of formation of NH3=-46.3kJmol-1

Standard enthalpy of formation of N2=0kJmol-1

Standard enthalpy of formation of N2H4=50.45kJmol-1

Standard enthalpy of decomposition = [4ΔH°f(NH3)+ΔH°f(N2)]-3ΔH°f(N2H4)

=[(4)(-46.3kJmol-1)+(0)]-(3)(50.42kJmol-1)

=-336.5kJmol-1

Standard enthalpy of decomposition of Hydrazine = -336.5kJmol-1

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The standard enthalpy of decomposition of Hydrazine has to be calculated. The equation has to be balanced and ΔH° has to be calculated in mass per kilogram for each of them and better fuel has to be identified.

Concept Introduction:

The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (ΔHf°).  The standard enthalpy of formation is used to determine the standard enthalpies of compound and element.

The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.

The equation for determining the standard enthalpies of compound and element can be given by,

ΔH°reaction=nΔH°f(products)-mΔH°f(reactants)

Answer to Problem 6.76QP

The standard enthalpy ΔH° for N2H4(l)=-1.941×104kJkg-1 and NH3 is -2.245×104kJkg-1

The standard enthalpy of Ammonia is found to be -2.245×104kJkg-1 .

Balanced equation are given as,

  1. a) N2H4(l)+O2(g)N2(g)+2H2O(l)
  2. b) 4NH3(g)+3O2(g)2N2(g)+6H2O(l)

Explanation of Solution

The equations are balance by multiplying the equal numbers on product and reactant side. The balanced equations can be given as,

  1. a) N2H4(l)+O2(g)N2(g)+2H2O(l)
  2. b) 4NH3(g)+3O2(g)2N2(g)+6H2O(l)

To calculate: the ΔH° for N2H4(l)+O2(g)N2(g)+2H2O(l)

Standard enthalpy of formation of N2=0kJmol-1

Standard enthalpy of formation of N2H4=50.45kJmol-1

Standard enthalpy of formation of H2O=-285.8kJmol-1

Standard enthalpy of formation of O2=0kJmol-1

ΔH°reaction=[ΔH°f(N2)+2ΔH°f(H2O(l))]-[ΔH°f(N2H4(l))+ΔH°f(O2)]ΔH°reaction=[(1)(0)+(2)(-285.8kJmol-1)]-[(1)(50.42kJmol-1)+(1)(0)]ΔH°reaction=-622.0kJmol-1

In terms of mass, ΔH°can be given as,

N2H4(l)=ΔH°reaction=-622.0kJ1molN2H4×1molN2H432.05gN2H4×1000g1kgΔH°reaction=-1.941×104kJkg-1

To calculate the ΔH° for 4NH3(g)+3O2(g)2N2(g)+6H2O(l)

Standard enthalpy of formation of N2=0kJmol-1

Standard enthalpy of formation of NH3=-46.3kJmol-1

Standard enthalpy of formation of H2O=-285.8kJmol-1

Standard enthalpy of formation of O2=0kJmol-1

ΔH°reaction=[2ΔH°f(N2)+6ΔH°f(H2O(l))]-[4ΔH°f(NH3(l))+3ΔH°f(O2)]ΔH°reaction=[(2)(0)+(6)(-285.8kJmol-1)]-[(4)(-46.3)kJmol-1)+(3)(0)]ΔH°reaction=1529.6kJmol-1

In terms of mass, ΔH°can be given as,

NH3(g)=ΔH°reaction=-1529.6kJ4molNH3×1molN2H417.03 gN2H4×1000g1kgΔH°reaction=-2.245×104kJkg-1

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The standard enthalpy of decomposition of Hydrazine has to be calculated. The equation has to be balanced and ΔH° has to be calculated in mass per kilogram for each of them and better fuel has to be identified.

Concept Introduction:

The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (ΔHf°).  The standard enthalpy of formation is used to determine the standard enthalpies of compound and element.

The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.

The equation for determining the standard enthalpies of compound and element can be given by,

ΔH°reaction=nΔH°f(products)-mΔH°f(reactants)

Answer to Problem 6.76QP

Ammonia is better fuel than Hydrazine.

Explanation of Solution

Ammonia acts a better fuel when compared to Hydrazine because it releases more energy per kilogram of substance.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

Connect for Chemistry

Ch. 6.4 - Given the thermochemical equation...Ch. 6.4 - Calculate U for the following reaction at 1 atm...Ch. 6.5 - An iron bar of mass 869 g cools from 94C to 5C....Ch. 6.5 - A quantity of 1.922 g of methanol (CH3OH) was...Ch. 6.5 - A 30.14-g stainless steel ball bearing at 117.82C...Ch. 6.5 - A quantity of 4.00 102 mL of 0.600 M HNO3 is...Ch. 6.5 - A 1-g sample of Al and a 1-g sample of Fe are...Ch. 6.5 - A 1.252 g-sample of cyclohexanol (C6H12O) was...Ch. 6.5 - A 100.0-g sample of an unknown metal at 125C is...Ch. 6.6 - Calculate the standard enthalpy of formation of...Ch. 6.6 - Benzene (C6H6) burns in air to produce carbon...Ch. 6.6 - Which of the following does not have Hfo=0 at 25C?...Ch. 6.6 - Explain why reactions involving reactant compounds...Ch. 6.6 - Using data from Appendix 2, calculate Hrxno for...Ch. 6.6 - Given the following information...Ch. 6.7 - Use the data in Appendix 2 to calculate the heat...Ch. 6 - Define these terms: system, surroundings, open...Ch. 6 - What is heat? How does heat differ from thermal...Ch. 6 - What are the units for energy commonly employed in...Ch. 6 - A truck initially traveling at 60 km per hour is...Ch. 6 - These are various forms of energy: chemical, heat,...Ch. 6 - Define these terms: thermochemistry, exothermic...Ch. 6 - Stoichiometry is based on the law of conservation...Ch. 6 - Describe two exothermic processes and two...Ch. 6 - Decomposition reactions are usually endothermic,...Ch. 6 - On what law is the first law of thermodynamics...Ch. 6 - Explain what is meant by a state function. Give...Ch. 6 - The internal energy of an ideal gas depends only...Ch. 6 - Consider these changes: (a) Hg(l)Hg(g) (b)...Ch. 6 - A sample of nitrogen gas expands in volume from...Ch. 6 - A gas expands in volume from 26.7 mL to 89.3 mL at...Ch. 6 - A gas expands and does P-V work on the...Ch. 6 - The work done to compress a gas is 74 J. As a...Ch. 6 - Calculate the work done when 50.0 g of tin...Ch. 6 - Calculate the work done in joules when 1.0 mole of...Ch. 6 - Prob. 6.21QPCh. 6 - In writing thermochemical equations, why is it...Ch. 6 - Explain the meaning of this thermochemical...Ch. 6 - Consider this reaction:...Ch. 6 - The first step in the industrial recovery of zinc...Ch. 6 - Determine the amount of heat (in kJ) given off...Ch. 6 - Consider the reaction...Ch. 6 - Consider the reaction...Ch. 6 - What is the difference between specific heat and...Ch. 6 - Define calorimetry and describe two commonly used...Ch. 6 - Consider the following data: Metal Al Cu Mass (g)...Ch. 6 - A piece of silver of mass 362 g has a heat...Ch. 6 - A 6.22-kg piece of copper metal is heated from...Ch. 6 - Calculate the amount of heat liberated (in kJ)...Ch. 6 - A sheet of gold weighing 10.0 g and at a...Ch. 6 - To a sample of water at 23.4C in a...Ch. 6 - A 0.1375-g sample of solid magnesium is burned in...Ch. 6 - A quantity of 85.0 mL of 0.900 M HCl is mixed with...Ch. 6 - What is meant by the standard-state condition?Ch. 6 - How are the standard enthalpies of an element and...Ch. 6 - What is meant by the standard enthalpy of a...Ch. 6 - Write the equation for calculating the enthalpy of...Ch. 6 - State Hesss law. Explain, with one example, the...Ch. 6 - Describe how chemists use Hesss law to determine...Ch. 6 - Which of the following standard enthalpy of...Ch. 6 - The Hfo values of the two allotropes of oxygen, O2...Ch. 6 - Which is the more negative quantity at 25C: Hfo...Ch. 6 - Predict the value of Hfo (greater than, less than,...Ch. 6 - In general, compounds with negative Hfo values are...Ch. 6 - Suggest ways (with appropriate equations) that...Ch. 6 - Calculate the heat of decomposition for this...Ch. 6 - The standard enthalpies of formation of ions in...Ch. 6 - Calculate the heats of combustion for the...Ch. 6 - Calculate the heats of combustion for the...Ch. 6 - Methanol, ethanol, and n-propanol are three common...Ch. 6 - The standard enthalpy change for the following...Ch. 6 - From the standard enthalpies of formation,...Ch. 6 - Pentaborane-9, B5H9, is a colorless, highly...Ch. 6 - Determine the amount of heat (in kJ) given off...Ch. 6 - At 850C, CaCO3 undergoes substantial decomposition...Ch. 6 - From these data,...Ch. 6 - From the following data,...Ch. 6 - From the following heats of combustion,...Ch. 6 - Calculate the standard enthalpy change for the...Ch. 6 - Prob. 6.65QPCh. 6 - Why is the lattice energy of a solid always a...Ch. 6 - Consider two ionic compounds A and B. A has a...Ch. 6 - Mg2+ is a smaller cation than Na+ and also carries...Ch. 6 - Why is it dangerous to add water to a concentrated...Ch. 6 - Which of the following does not have Hfo=O at 25C?...Ch. 6 - Calculate the expansion work done when 3.70 moles...Ch. 6 - Prob. 6.73QPCh. 6 - Given the thermochemical equations:...Ch. 6 - The standard enthalpy change H for the thermal...Ch. 6 - Hydrazine, N2H4, decomposes according to the...Ch. 6 - A quantity of 2.00 102 mL of 0.862 M HCl is mixed...Ch. 6 - A 3.53-g sample of ammonium nitrate (NH4NO3) was...Ch. 6 - Consider the reaction...Ch. 6 - Prob. 6.80QPCh. 6 - Prob. 6.81QPCh. 6 - A 2.10-mole sample of crystalline acetic acid,...Ch. 6 - Prob. 6.83QPCh. 6 - You are given the following data:...Ch. 6 - A gaseous mixture consists of 28.4 mole percent of...Ch. 6 - When 2.740 g of Ba reacts with O2 at 298 K and 1...Ch. 6 - Methanol (CH3OH) is an organic solvent and is also...Ch. 6 - A 44.0-g sample of an unknown metal at 99.0C was...Ch. 6 - Using the data in Appendix 2, calculate the...Ch. 6 - Producer gas (carbon monoxide) is prepared by...Ch. 6 - Prob. 6.91QPCh. 6 - Prob. 6.92QPCh. 6 - Ethanol (C2H5OH) and gasoline (assumed to be all...Ch. 6 - The combustion of what volume of ethane (C2H6),...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - Explain the cooling effect experienced when...Ch. 6 - For which of the following reactions does...Ch. 6 - Prob. 6.99QPCh. 6 - A quantity of 0.020 mole of a gas initially at...Ch. 6 - Prob. 6.101QPCh. 6 - Prob. 6.102QPCh. 6 - Prob. 6.103QPCh. 6 - Prob. 6.104QPCh. 6 - A person ate 0.50 pound of cheese (an energy...Ch. 6 - Prob. 6.106QPCh. 6 - Prob. 6.107QPCh. 6 - The enthalpy of combustion of benzoic acid...Ch. 6 - Prob. 6.109QPCh. 6 - Prob. 6.110QPCh. 6 - Glaubers salt, sodium sulfate decahydrate (Na2SO4 ...Ch. 6 - A balloon 16 m in diameter is inflated with helium...Ch. 6 - Acetylene (C2H2) can be hydrogenated (reacting...Ch. 6 - Prob. 6.114QPCh. 6 - An excess of zinc metal is added to 50.0 mL of a...Ch. 6 - (a) A person drinks four glasses of cold water...Ch. 6 - Prob. 6.118QPCh. 6 - Why are cold, damp air and hot, humid air more...Ch. 6 - Prob. 6.120QPCh. 6 - Prob. 6.121QPCh. 6 - Prob. 6.122QPCh. 6 - Prob. 6.123QPCh. 6 - Determine the standard enthalpy of formation of...Ch. 6 - Prob. 6.125QPCh. 6 - Ice at 0C is placed in a Styrofoam cup containing...Ch. 6 - Prob. 6.127QPCh. 6 - Prob. 6.128QPCh. 6 - Calculate the internal energy of a Goodyear blimp...Ch. 6 - Prob. 6.131QPCh. 6 - Acetylene (C2H2) can be made by reacting calcium...Ch. 6 - The average temperature in deserts is high during...Ch. 6 - From a thermochemical point of view, explain why a...Ch. 6 - Calculate the U for the following reaction at 298...Ch. 6 - Lime is a term that includes calcium oxide (CaO,...Ch. 6 - A 4.117-g impure sample of glucose (C6H12O6) was...Ch. 6 - Construct a table with the headings q, w, U, and...Ch. 6 - The combustion of 0.4196 g of a hydrocarbon...Ch. 6 - Metabolic activity in the human body releases...Ch. 6 - Give an example for each of the following...Ch. 6 - From the following data, calculate the heat of...Ch. 6 - Starting at A, an ideal gas undergoes a cyclic...Ch. 6 - For reactions in condensed phases (liquids and...Ch. 6 - The diagrams (a)(d) represent various physical and...Ch. 6 - A 20.3-g sample of an unknown metal and a 28.5-g...Ch. 6 - Prob. 6.148QPCh. 6 - Prob. 6.149QPCh. 6 - The fastest serve in tennis is about 150 mph. Can...Ch. 6 - Prob. 6.151QPCh. 6 - It has been estimated that 3 trillion standard...Ch. 6 - Prob. 6.153QPCh. 6 - Prob. 6.154QPCh. 6 - Prob. 6.155QPCh. 6 - We hear a lot about how the burning of...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY