Bundle: Chemistry For Today: General, Organic, And Biochemistry, 9th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card
Bundle: Chemistry For Today: General, Organic, And Biochemistry, 9th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card
9th Edition
ISBN: 9781337580632
Author: Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.76E

Using the specific heat data of Table 6.8, calculate the amount of heat (in calories) needed to increase the temperature of the following:

a. 50. g of aluminum from 25 ° C to 55 ° C

b. 2.50 × 10 3 g of ethylene glycol from 80. ° C to 85 ° C

c. 500. g of steam from 110. ° C to 120. ° C

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

The amount of heat (in calories) required to increase the temperature of 50g aluminum from 25°C to 55°C is to be calculated.

Concept introduction:

When temperature is changed or the state of matter is changed the energy is either absorbed or released. The energy required to change temperature of matter is known as specific heat of matter. The energy required to change a state of matter is known as heat of fusion or vaporization.

Answer to Problem 6.76E

The amount of heat (in calories) required to increase the temperature of 50g aluminum from 25°C to 55°C is 360cal.

Explanation of Solution

The formula to calculate amount of heat (in calories) required to increase the temperature is given below as,

Heat=(samplemass)(specificheat)(temperaturechange)

Substitute the values in the above equation as follows.

Heat=(samplemass)(specificheat)(temperaturechange)=(50g)(0.24calg°C)(55°C25°C)=(50g)(0.24calg°C)(30°C)=360cal

Conclusion

The amount of heat (in calories) required to increase the temperature of 50g aluminum from 25°C to 55°C is 360cal.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

The amount of heat (in calories) required to increase the temperature of 2.50×103g ethylene glycol from 80°C to 85°C is to be calculated.

Concept introduction:

When temperature is changed or the state of matter is changed the energy is either absorbed or released. The energy required to change temperature of matter is known as specific heat of matter. The energy required to change a state of matter is known as heat of fusion or vaporization.

Answer to Problem 6.76E

The amount of heat (in calories) required to increase the temperature of 2.50×103g ethylene glycol from 80°C to 85°C is 7.125×103cal.

Explanation of Solution

The formula to calculate amount of heat (in calories) required to increase the temperature is given below as,

Heat=(samplemass)(specificheat)(temperaturechange)

Substitute the values in the above equation as follows.

Heat=(samplemass)(specificheat)(temperaturechange)=(2.50×103g)(0.57calg°C)(85°C80°C)=(2.50×103g)(0.57calg°C)(5°C)=7.125×103cal

Conclusion

The amount of heat (in calories) required to increase the temperature of 2.50×103g ethylene glycol from 80°C to 85°C is 7.125×103cal.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

The amount of heat (in calories) required to increase the temperature of 500g steam from 110°C to 120°C is to be calculated.

Concept introduction:

When temperature is changed or the state of matter is changed the energy is either absorbed or released. The energy required to change temperature of matter is known as specific heat of matter. The energy required to change a state of matter is known as heat of fusion or vaporization.

Answer to Problem 6.76E

The amount of heat (in calories) required to increase the temperature of 500g steam from 110°C to 120°C is 2400cal.

Explanation of Solution

The formula to calculate amount of heat (in calories) required to increase the temperature is given below as,

Heat=(samplemass)(specificheat)(temperaturechange)

Substitute the values in the above equation as follows.

Heat=(samplemass)(specificheat)(temperaturechange)=(500g)(0.48calg°C)(120°C110°C)=(500g)(0.48calg°C)(10°C)=2400cal

Conclusion

The amount of heat (in calories) required to increase the temperature of 500g steam from 110°C to 120°C is 2400cal.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(f) SO: Best Lewis Structure 3 e group geometry:_ shape/molecular geometry:, (g) CF2CF2 Best Lewis Structure polarity: e group arrangement:_ shape/molecular geometry: (h) (NH4)2SO4 Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):
1. Problem Set 3b Chem 141 For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the molecule is polar or non-polar (iv) (a) SeF4 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: (b) AsOBr3 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles):
(c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):

Chapter 6 Solutions

Bundle: Chemistry For Today: General, Organic, And Biochemistry, 9th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card

Ch. 6 - Prob. 6.11ECh. 6 - Prob. 6.12ECh. 6 - Explain each of the following observations using...Ch. 6 - Prob. 6.14ECh. 6 - The following statements are best associated with...Ch. 6 - Prob. 6.16ECh. 6 - Prob. 6.17ECh. 6 - Prob. 6.18ECh. 6 - Prob. 6.19ECh. 6 - Prob. 6.20ECh. 6 - Prob. 6.21ECh. 6 - Convert each of the following temperatures from...Ch. 6 - Prob. 6.23ECh. 6 - Prob. 6.24ECh. 6 - A 200.mL sample of oxygen gas is collected at...Ch. 6 - A 200.mL sample of nitrogen gas is collected at...Ch. 6 - Prob. 6.27ECh. 6 - Prob. 6.28ECh. 6 - What volume in liters of air measured at 1.00atm...Ch. 6 - What volume in liters of air measured at 1.00atm...Ch. 6 - Prob. 6.31ECh. 6 - Prob. 6.32ECh. 6 - Prob. 6.33ECh. 6 - Prob. 6.34ECh. 6 - A sample of gas has a volume of 375mL at 27C. The...Ch. 6 - What volume of gas in liters at 120.C must be...Ch. 6 - Prob. 6.37ECh. 6 - Prob. 6.38ECh. 6 - Prob. 6.39ECh. 6 - A helium balloon was partially filled with...Ch. 6 - You have a 1.50-L balloon full of air at 30.C. To...Ch. 6 - Prob. 6.42ECh. 6 - What minimum pressure would a 250.-mL aerosol can...Ch. 6 - Prob. 6.44ECh. 6 - Prob. 6.45ECh. 6 - Prob. 6.46ECh. 6 - Prob. 6.47ECh. 6 - Prob. 6.48ECh. 6 - Prob. 6.49ECh. 6 - The pressure gauge of a steel cylinder of methane...Ch. 6 - Suppose 12.0g of dry ice (solidCO2) was placed in...Ch. 6 - Prob. 6.52ECh. 6 - Prob. 6.53ECh. 6 - A sample of gaseous methyl ether has a mass of...Ch. 6 - A sample of gaseous nitrogen oxide is found to...Ch. 6 - A sample of gas weighs 0.176g and has a volume of...Ch. 6 - Prob. 6.57ECh. 6 - Prob. 6.58ECh. 6 - Prob. 6.59ECh. 6 - Prob. 6.60ECh. 6 - Prob. 6.61ECh. 6 - Prob. 6.62ECh. 6 - Prob. 6.63ECh. 6 - Classify each of the following processes as...Ch. 6 - Classify each of the following processes as...Ch. 6 - Prob. 6.66ECh. 6 - Prob. 6.67ECh. 6 - Prob. 6.68ECh. 6 - Prob. 6.69ECh. 6 - Prob. 6.70ECh. 6 - Prob. 6.71ECh. 6 - Prob. 6.72ECh. 6 - Prob. 6.73ECh. 6 - Prob. 6.74ECh. 6 - Prob. 6.75ECh. 6 - Using the specific heat data of Table 6.8,...Ch. 6 - Using the specific heat data of Table 6.8,...Ch. 6 - Prob. 6.78ECh. 6 - Prob. 6.79ECh. 6 - Liquid Freon (CCl2F2) is used as a refrigerant. It...Ch. 6 - Prob. 6.81ECh. 6 - What is the density of argon gas in g/mL at STP?Ch. 6 - Prob. 6.83ECh. 6 - Prob. 6.84ECh. 6 - Prob. 6.85ECh. 6 - Prob. 6.86ECh. 6 - Prob. 6.87ECh. 6 - Prob. 6.88ECh. 6 - Prob. 6.89ECh. 6 - Prob. 6.90ECh. 6 - Prob. 6.91ECh. 6 - Prob. 6.92ECh. 6 - Refer to Figure 6.12 and answer the question....Ch. 6 - Prob. 6.94ECh. 6 - Prob. 6.95ECh. 6 - Definite shape and definite volume best describes...Ch. 6 - Prob. 6.97ECh. 6 - Prob. 6.98ECh. 6 - Prob. 6.99ECh. 6 - Which of the following indicates the relative...Ch. 6 - Prob. 6.101ECh. 6 - Prob. 6.102ECh. 6 - What are the differentiating factors between...Ch. 6 - Prob. 6.104ECh. 6 - Prob. 6.105ECh. 6 - When a vapor condenses into a liquid: a.it absorbs...Ch. 6 - Prob. 6.107ECh. 6 - Prob. 6.108ECh. 6 - Prob. 6.109ECh. 6 - Prob. 6.110ECh. 6 - Prob. 6.111ECh. 6 - Prob. 6.112ECh. 6 - How much heat is required to raise the temperature...Ch. 6 - Prob. 6.115ECh. 6 - Prob. 6.116ECh. 6 - Prob. 6.117ECh. 6 - Prob. 6.118ECh. 6 - Prob. 6.119ECh. 6 - Prob. 6.120ECh. 6 - Prob. 6.121ECh. 6 - Prob. 6.122ECh. 6 - Prob. 6.123ECh. 6 - Prob. 6.124ECh. 6 - Prob. 6.125E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY