FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s,
respectively. At the exit, the temperature is 460°R and the pressure is 40 Ibf/in?. The area of the exit is 0.0085 ft?. Use the ideal gas
model with k = 1.67, and neglect potential energy effects.
Determine the velocity at the exit, in ft/s, and the mass flow rate, in Ib/s.
T-4
Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s,
respectively. At the exit, the temperature is 480°R and the pressure is 40 lb/in?. The area of the exit is 0.0085 ft². Use the ideal gas
model with k-1.67, and neglect potential energy effects.
Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s.
Step 1
Your answer is correct
Determine the velocity at the exit, in ft/s.
V₂- 677.088
Hint
Step 2
ft/s
Determine the mass flow rate, in lb/s, through the nozzle.
m = i
lb/s
Attempts: 2 of 4 used
Knowledge Booster
Similar questions
- 1. thermodynamicsarrow_forwardThe entropy of an ideal gas depends on both T and P. The function s° represents only the temperature-dependent part of entropy.arrow_forwardOne kg of an ideal gas (gas constant R = 287 J/kg.K) undergoes an irreversible process from state-1 (1 bar, 300 K) to state -2 (2 bar, 300 K). The change in specific entropy (52 - s1) of the gas (in J/kg. K) in the process isarrow_forward
- Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s, respectively. At the exit, the temperature is 480°R and the pressure is 40 lbf/in². The area of the exit is 0.0085 ft². Use the ideal gas model with k = 1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s. Step 1 Determine the velocity at the exit, in ft/s. V₂ = i ft/sarrow_forwardWater contained in a closed, rigid tank, initially at 100 lbf/in2, 800°F, is cooled to a final state where the pressure is 25 lbf/in². Determine the quality at the final state and the change in specific entropy, in Btu/lb-ºR, for the process.arrow_forwardLiquid water flows isothermally at 20°C through a one-inlet, one-exit duct operating at steady state. The duct's inlet and exit P2 = 4.8 bar T = 320°C diameters are 0.02 m and 0.04 m, Water vapor (AV)2 = (AV)3 respectively. At the inlet, the velocity is 50 m/s and the pressure is 1 bar. At the exit, determine the mass flow rate, in kg/s, and V, T A1 = 0.2 m? P1 = 5 bar 3 velocity, in m/s. P3= 4.8 bar T3 = 320°Carrow_forward
- An insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a large vessel holding steam at 40 bar, 500°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 20 bar.Determine the final temperature of the steam in the tank, in °C, and the final mass of the steam in the tank, in kg.arrow_forwardAir flows through a nozzle. It enters at 20 bar and 1100°F and exits at 10 bar and 800°F. The inlet diameter ratio between outlet diameter is 3. Consider steady state, determine air inlet and outlet velocities, in ft/sarrow_forwardRefrigerant 134a at p1 = 30 lb/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 400 lb/h and exits as saturated vapor at p2 = 160 lb;/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 4 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr-°R.arrow_forward
- 1. As shown in the figure below, Refrigerant 134a enters a condenser operating at steady state at 70 lbf/in2, 160 °F and is condensed to saturated liquid at 60 lbf/in on the outside of tubes through which cooling water flows. In passing through the tubes, the cooling water increases in temperature by 20 'F and experiences no significant pressure drop. Cooling water can be modeled as incompressible with v-0.0161 ft'/lb and c = 1 Btu/lb R. The mass flow rate of the refrigerant is 3100 lb/h. Neglecting kinetic and potential energy effects and ignoring heat transfer from the outside of the condenser, determine: (a) The volumetric flow rate of the entering cooling water, in gal/min (b) The rate of heat transfer, in Btu/h, to the cooling water from the condensing refrigerant (5 points) Refrigerant 134a P= 70 in. T= 160 F 3100 heh 7,-7,-20F-20R Reirigerant 134a [P-60 lbin V Saturated liquidarrow_forward0.2 m³ of air at 4 bar and 130 °C is contained in a system. A reversible isothermally expansion takes place till the pressure falls to 1.02 bar. The gas is then heated at constant pressure till Temperature is 144 °C. Calculate: (i) Pressure, Temperature and volume of each state. (ii) The work done. (iii) The net heat supplied. Take cp = 1 kJ/kg K, cv = 0.714 kJ/kg K.arrow_forwardRefrigerant 134a at p1 = 30 lbe/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 400 Ib/h and exits as saturated vapor at p2 = 160 Ib/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 4 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr.°R.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY