FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Water contained in a closed, rigid tank, initially at 100 lbf/in2, 800oF, is cooled to a final state where the pressure is 25 lbf/in2.Determine the quality at the final state and the change in specific entropy, in Btu/lb·oR, for the process.
1. thermodynamics
0.25 kg of air at a pressure of 21 bar occupies a volume of 0.03 m in a cylinder behind a piston. If
this air expands Polytropically to a volume of 0.27 m' according to the law PV13 C, Find:
a. Work done by or on the system.
b. Increase or decrease in internal energy.
c. Heat absorbed or rejected by air.
d. Increase or decrease in entropy.
Knowledge Booster
Similar questions
- Water contained in a closed, rigid tank, initially at 100 lb;/in², 800°F, is cooled to a final state where the pressure is 50 lb;/in?. Determine the quality at the final state and the change in specific entropy, in Btu/lb-°R, for the process.arrow_forwardAn industrial sized boiler, operates at a pressure of 20 bar. Saturated liquid enters the boiler and at the exit becomes steam with a temperature of 1100 K. Determine the following: a. Heat transfer (kJ/kg) b. Change in internal energy (kJ/kg) c. Change in Entropy (kJ/kg.K)arrow_forwardAn insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a large vessel holding steam at 40 bar, 500°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 20 bar.Determine the final temperature of the steam in the tank, in °C, and the final mass of the steam in the tank, in kg.arrow_forward
- Water vapors at 40 bar enters a pipe fitting (adapter) with a velocity of 169 m/s and exits thefitting at 10 bar and 572°F. If the temperature at the inlet is 1004°F., calculate the exit velocity.The system is assumed to be at steady state.arrow_forwardRefrigerant 134a enters an insulated diffuser as a saturated vapor at 120°F with a velocity of 1200 ft/s. The inlet area is 1.4 in?. At the exit, the pressure is 400 Ibf/in? and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in Ib/s, and the exit temperature, in °F.arrow_forwardQ1: An air receiver contains air at 16 bar and 42°C. A valve is opened and some air is allowed to blow out to atmosphere. The pressure of the air in the receiver drops rapidly to 12 bar when the valve is then closed. Assuming that the mass in the receiver undergoes a reversible adiabatic process, calculate the initial and final mass of air if you know that the amount of air which has left the receiver is 18.04 kgs.arrow_forward
- Water contained in a closed, rigid tank, initially at 100 lbę/in?, 800°F, is cooled to a final state where the pressure is 40 Ib;/in?. Determine the quality at the final state and the change in specific entropy, in Btu/lb•°R, for the process.arrow_forwardT-4arrow_forward= 71°C with v₁ = 0.201 m³/kg. The gas v1 A piston-cylinder assembly holds 1.2 kg of air initially at T₁ undergoes a process as an ideal gas and reaches a final state at T2 = 149° C with v2 = Determine the change in entropy AS in kJ/K. Assume c = 0.72 kJ/kg. K. 0.725 m³/kg. (a) AS = Ex: 0.888 kJ/K (b) Is the process adiabatic? Pick (c) What is the direction of heat transfer? Pick Airarrow_forward
- Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 24°C and exits at 1.0 bar. The refrigerant undergoes a throttling process. Determine the temperature, in °C, and the quality of the refrigerant at the exit of the expansion valve. a. Determine the temperature of the refrigerant at the exit, in °C. b. Determine the quality of the refrigerant at the exit of the expansion valve. th pi=10 bar T₁=24°C 2. Expansion valve -p2=1.0 bararrow_forwardArgon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s, respectively. At the exit, the temperature is 480°R and the pressure is 40 lb/in?. The area of the exit is 0.0085 ft². Use the ideal gas model with k-1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s. Step 1 Your answer is correct Determine the velocity at the exit, in ft/s. V₂- 677.088 Hint Step 2 ft/s Determine the mass flow rate, in lb/s, through the nozzle. m = i lb/s Attempts: 2 of 4 usedarrow_forwardAn ideal gas undergoes a process from state 1 ( the properties are T₁ = 300 K, p₁ = 100 kPa) to state 2 (the properties are T₂ = 600 K, p₂ = 500 kPa). The specific heats of the ideal gas are: c = 1 kJ/kg-K and c = 0.7 kJ/kg-K.. The change in specific entropy of the ideal gas to two decimal places)from state 1 to state 2 (in kJ/kg-K) is......arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY