Continuation of Problems 8 and 37. Another explanation is that the stones move only when the water dumped on the playa during a storm freezes into a large, thin sheet of ice. The stones are trapped in place in the ice. Then, as air flows across the ice during a wind, the air-drag forces on the ice and stones move them both, with the stones gouging out the trails. The magnitude of the air-drag force on this horizontal “ice sail” is given by D ice = 4 C ice ρA ice v 2 , where C ice is the drag coefficient (2.0 × 10 −3 ), ρ is the air density (1.21 kg/m 3 ), A ice is the horizontal area of the ice, and v is the wind speed along the ice. Assume the following: The ice sheet measures 400 m by 500 m by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the ground and a density of 917 kg/m 3 . Also assume that 100 stones identical to the one in Problem 8 are trapped in the ice. To maintain the motion of the sheet, what are the required wind speeds (a) near the sheet and (b) at a height of 10 m? (c) Are these reasonable values for high-speed winds in a storm?
Continuation of Problems 8 and 37. Another explanation is that the stones move only when the water dumped on the playa during a storm freezes into a large, thin sheet of ice. The stones are trapped in place in the ice. Then, as air flows across the ice during a wind, the air-drag forces on the ice and stones move them both, with the stones gouging out the trails. The magnitude of the air-drag force on this horizontal “ice sail” is given by D ice = 4 C ice ρA ice v 2 , where C ice is the drag coefficient (2.0 × 10 −3 ), ρ is the air density (1.21 kg/m 3 ), A ice is the horizontal area of the ice, and v is the wind speed along the ice. Assume the following: The ice sheet measures 400 m by 500 m by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the ground and a density of 917 kg/m 3 . Also assume that 100 stones identical to the one in Problem 8 are trapped in the ice. To maintain the motion of the sheet, what are the required wind speeds (a) near the sheet and (b) at a height of 10 m? (c) Are these reasonable values for high-speed winds in a storm?
Continuation of Problems 8and 37. Another explanation is that the stones move only when the water dumped on the playa during a storm freezes into a large, thin sheet of ice. The stones are trapped in place in the ice. Then, as air flows across the ice during a wind, the air-drag forces on the ice and stones move them both, with the stones gouging out the trails. The magnitude of the air-drag force on this horizontal “ice sail” is given by Dice = 4CiceρAicev2, where Cice is the drag coefficient (2.0 × 10−3), ρ is the air density (1.21 kg/m3), Aice is the horizontal area of the ice, and v is the wind speed along the ice.
Assume the following: The ice sheet measures 400 m by 500 m by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the ground and a density of 917 kg/m3. Also assume that 100 stones identical to the one in Problem 8 are trapped in the ice. To maintain the motion of the sheet, what are the required wind speeds (a) near the sheet and (b) at a height of 10 m? (c) Are these reasonable values for high-speed winds in a storm?
A car driving at 27m/s veers to the left to avoid a deer in the road. The maneuver takes 2.0s and the direction of travel is altered by 20 degrees. What is the average acceleration during the constant speed maneuver? Do this in accordance with the example in the chapter.
No No No
Chatgpt pls will upvote
2
C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO
Bendemeer Secondary School
Secondary Three Express Physics
Chpt 1: Physical Quantities, Unit and Measurements Assignment
Name: Chen ShiMan
loov neowled soria
25
( 03 ) Class: 3 Respect 6 Date: 2025.01.22
1
Which group consists only of scalar quantities?
ABCD
A
acceleration, moment and energy store
distance, temperature and time
length, velocity and current
mass, force and speed
B
D.
B
Which diagram represents the resultant vector of P and Q? lehtele
시
bas siqpeq olarist of beau eldeo qirie-of-qi
P
A
C
-B
qadmis
rle mengaib priwollot erT S
Quilons of qira ono mont aboog
eed indicator
yh from West
eril to Inioqbim srij
enisinoo MA
(6)
08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld
260 km/h
D
1
D.
e
51
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.