Galileo thought about whether acceleration should be defined as the rate of change of velocity over time or as the rate of change in velocity over distance. He chose the former, so let’s use the name “vroomosity” for the rate of change of velocity over distance. For motion of a particle on a straight line with constant acceleration, the equation v = v i + at gives its velocity v as a function of time. Similarly, for a particle’s linear motion with constant vroomosity k , the equation v = v i + kx gives the velocity as a function of the position x if the particle’s speed is v i at x = 0. (a) Find the law describing the total force acting on this object of mass m . Describe an example of such a motion or explain why it is unrealistic for (b) the possibility of k positive and (c) the possibility of k negative.
Galileo thought about whether acceleration should be defined as the rate of change of velocity over time or as the rate of change in velocity over distance. He chose the former, so let’s use the name “vroomosity” for the rate of change of velocity over distance. For motion of a particle on a straight line with constant acceleration, the equation v = v i + at gives its velocity v as a function of time. Similarly, for a particle’s linear motion with constant vroomosity k , the equation v = v i + kx gives the velocity as a function of the position x if the particle’s speed is v i at x = 0. (a) Find the law describing the total force acting on this object of mass m . Describe an example of such a motion or explain why it is unrealistic for (b) the possibility of k positive and (c) the possibility of k negative.
Solution Summary: The author explains the law that describes the total force act on the object of mass m.
Galileo thought about whether acceleration should be defined as the rate of change of velocity over time or as the rate of change in velocity over distance. He chose the former, so let’s use the name “vroomosity” for the rate of change of velocity over distance. For motion of a particle on a straight line with constant acceleration, the equation v = vi + at gives its velocity v as a function of time. Similarly, for a particle’s linear motion with constant vroomosity k, the equation v = vi + kx gives the velocity as a function of the position x if the particle’s speed is vi at x = 0. (a) Find the law describing the total force acting on this object of mass m. Describe an example of such a motion or explain why it is unrealistic for (b) the possibility of k positive and (c) the possibility of k negative.
A blacksmith cools a 1.60 kg chunk of iron, initially
at a temperature of 650.0° C, by trickling 30.0°C
water over it. All the water boils away, and the iron
ends up at a temperature of 120.0° C.
For related problem-solving tips and strategies, you
may want to view a Video Tutor Solution of
Changes in both temperature and phase.
Part A
How much water did the blacksmith trickle over the iron?
Express your answer with the appropriate units.
HÅ
mwater =
Value
0
?
Units
Submit
Request Answer
Steel train rails are laid in 13.0-m-long segments
placed end to end. The rails are laid on a winter
day when their temperature is -6.0° C.
Part A
How much space must be left between adjacent rails if they are just to touch on a summer day when their
temperature is 32.0°C?
Express your answer with the appropriate units.
☐
о
μΑ
?
D =
Value
Units
Submit
Previous Answers Request Answer
× Incorrect; Try Again; 3 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Part B
If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is
32.0°C?
Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the
stress is compressive.
F
A
Ο ΑΣΦ
?
Ра
help me with this and the step I am so confused. It should look something like the figure i shown
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.