Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.42P
To determine
The resistance between the two perfect conductors.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two long, cylindrical conductors of radii a, and a, are parallel and separated by a
distance d, which is large compared with either radius. Show that the capacitance
per unit length is given approximately by
1.7
C - TEo In-
where a is the geometrical mean of the two radii.
Approximately what gauge wire (state diameter in millimeters) would be nec-
essary to make a two-wire transmission line with a capacitance of 1.2 x 10-11 F/m
if the separation of the wires was 0.5 cm? 1.5 cm? 5.0 cm?
4) A conductive material of uniform thickness h and intrinsic conductivity o is in
the form of a quarter-circular nut with inner radius a and outer radius b as
b - a
shown in the figure. Find the resistance between the curved boundaries
(a ver-bus) at this conductive nut.
Q11
AND EXPLAIN WHY
Chapter 6 Solutions
Engineering Electromagnetics
Ch. 6 - Prob. 6.1PCh. 6 - Let S = 100 mm2. d= 3 mm, and er = 12 for a...Ch. 6 - Capacitors tend to be more expensive as their...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - A parallel-plane capacitor is made using two...Ch. 6 - For the capacitor of Problem 6.6, consider the...Ch. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - A coaxial cable has conductor dimensions of a =...
Ch. 6 - Prob. 6.11PCh. 6 - (a) Determine the capacitance of an isolated...Ch. 6 - With reference to Figure 6.5, let b=6m, h=15m, and...Ch. 6 - Two=16 copper conductor (1.29 mm diameter) are...Ch. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Construct a curvilinear-square map for a coaxial...Ch. 6 - Prob. 6.18PCh. 6 - Construct a curvilinear- square map of the...Ch. 6 - Prob. 6.20PCh. 6 - The inner conductor of the transmission line shown...Ch. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - A potential field in free space is given in...Ch. 6 - A capacitor is formed from concentric spherical...Ch. 6 - Given the spherical symmetric field in free space,...Ch. 6 - Let V=z(x,y)=4e2xf(x)3y2 in a region of free space...Ch. 6 - Show that in a homogeneous medium of conductivity...Ch. 6 - What total charge must be located within a unit...Ch. 6 - Prob. 6.30PCh. 6 - For the parallel-plate capacitor shown in Figure...Ch. 6 - Prob. 6.32PCh. 6 - The functions V1 (p, , z) and V2(p, , z) both...Ch. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - By appropriate solution of Laplaces and Poissons...
Knowledge Booster
Similar questions
- Please solve it quickly....arrow_forwardA Suppose a copper conductor of length (UUm and cross-sectional area (A)m" and resistivity (6)N m, its resistance is [R = p(1/A)]. This copper conductor wounded around a ferromagnetic core, forming (N) turns. When this coil fed by a DC voltage (Va), its steady state current will be [lae = (Vac/R)]. But when this coil fed by an ms value of an AC voltage (Vms = Vdc), a steady state AC current of an rms value (lac) will pass through it. Explain the following questions: a) Why (lac < ldc) in this case, in spite of (Vms = Va)? What happens inside the electric circuit leads to reduce the current? b) What is the current waveform in this case? c) What is the voltage waveform across the coil? d) What is the type of the ammeter used in this circuit? e) Assume that the core length (le), cross sectional area (Ac), and its hysteresis loop data are known, what is its self inductance (L)? f) is the self inductance of this coil been constant? Or not? Why? g) If it is not constant, then what is it…arrow_forwardA coaxial cable of consists of two concentric cylindrical conductors. The region between the conductors is completely filled with polyethylene plastic. The radius of the inner conductor is 0.50 cm, the radius of the outer conductor is 1.75 cm, and the length of the cable is 15 cm. The resistivity of the plastic is 10130- m. Calculate the resistance of the plastic if the electric field is applied across the inner and outer radii of the conductor. O 1,6977 x 10o15 ohms 45.2048 x 1012 ohms 13.2922 x 1012 ohms O The answer cannot be found on the other choices.arrow_forward
- 2) Vo voltage is applied to the metal parallel plate capacitor system given in the figure. The region between the plates is filled with dielectric material of &-2.4. Bottom plate grounded and d-2mm in the z-axis of the top plate when placed at z=0 are within distance. For tension in the interplate region boundary conditions: If V(z)-0 volts for z-0 and V(z)-Vo volts for z-d; a) Potential expression in the interplate region V=? b) Electric field strength E-? c) Electric flux density D-? d) Surface charge densities of the plates p.=?arrow_forwardSuppose a eopper conductor of lengin ym ana cross-sectional area (A)m and resistivity On m, its resistance is [R = p(/A)). This copper conductor wounded around a ferTomagnetic core, forming (N) turns. When this coil fed by a DC voltage (V), its steady state current will be [lde = (Vac/R)]. But when this coil fed by an ms value of an AC voltage (Vms = Vac), a steady state AC current of an rms value (Ia) will pass through it. Explain the following questions: a) Why (lacarrow_forwardThe inner conductor of a long coaxial cable has radius a. The inner radius of the outer conductor is b. Inner conductor V0, outer conductor at 0 potential. Determine the electric potential and electric field strength in the insulating material.arrow_forwardSuppose a eopper conductor of lengin uym ana cross-sectional area (A)m and resistivity On m, its resistance is [R = p(/A)). This copper conductor wounded around a ferTomagnetic core, forming (N) turns. When this coil fed by a DC voltage (V), its steady state current will be [lde = (Vac/R)]. But when this coil fed by an ms value of an AC voltage (Vms = Vac), a steady state AC current of an rms value (Ia) will pass through it. Explain the following questions: a) Why (lacarrow_forwardThe potential of the inner conductor of a coaxial cable is Vi=41 V and the outer conductor potential is Vo=90 V as illustrated in the figure. Inner conductor radius is a=9 mm and outer conductor radius is b=32.6 mm. The insulator between the two conductors is free space, i.e., ɛ=ɛ0. A In the formula, written in standard units, for the potential function in the insulator, the constant term is= V V Potential value at p=20.8 mm is= V Potential value at p=4.5mm is= Varrow_forwardA solid conducting sphere of radius R carries a charge +Q. A thick conducting shell is concentric with the sphere and has an inner radius R2 and outer radius R3. The shell carries a charge -Q. The figure shows a cross section. a) Where are the charges located? Add charge symbols to the figure. R1 R3 R2 b) Add a few electric field lines and equipotential lines to the figure. Please label the lines clearly. c) Draw a sketch of the potential as a function of distance from the center of the sphere. Please label all interesting points on the graph.arrow_forwardA uniform electric field with strength (E), was applied on a uniform conductor wire with length (L) and its cross-section area is (A). An electric current passed through the wire with value (I). Derive an equation by which you can calculate the drift velocity of the electrons moving into the conductor wire?arrow_forwardA coaxial cable has a 10-mm diameter inside conductor and a metallic sheath with an inside diameter of 20 mm. If the insulating medium has a dielectric constant, k=3. Draw the diagram. a. What is the capacitance between the conductor and the shield per mile? b. If the cable is 12 km long determine the total capacitance.arrow_forward6- Why an insulator is represented as a capacitor C? What are the assumption modes?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill EducationFundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,