Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.37P
To determine
(a)
The location of the
To determine
(b)
The electric field
To determine
(c)
The relative permittivity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid conducting sphere of radius R
carries a charge +Q.
A thick conducting shell is concentric with the sphere
and has an inner radius R2 and outer radius R3.
The shell carries a charge -Q.
The figure shows a cross section.
a) Where are the charges located? Add charge symbols to
the figure.
R1
R3
R2
b) Add a few electric field lines and equipotential lines to the figure. Please label the lines
clearly.
c) Draw a sketch of the potential as a function of distance from the center of the sphere. Please
label all interesting points on the graph.
(al:Determine E caused by the spherical cloud of electrons with a volume charge density of -
1.68 x 10 -18 for 0 10mm. Clearly
mention the surfaces, there differential components and write the equation properly by
doing all the steps.
(b): For the dielectric composition shown in the figure find out its total capacitance.
A spherical capacitor consists of a conducting sphere of radius a on the inside and a
sphere with a radius b of its inner wall as the outer conductor. The gap between them
is filled with a dielectric of permeability ɛ. Determine the capacitance.
a
Chapter 6 Solutions
Engineering Electromagnetics
Ch. 6 - Prob. 6.1PCh. 6 - Let S = 100 mm2. d= 3 mm, and er = 12 for a...Ch. 6 - Capacitors tend to be more expensive as their...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - A parallel-plane capacitor is made using two...Ch. 6 - For the capacitor of Problem 6.6, consider the...Ch. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - A coaxial cable has conductor dimensions of a =...
Ch. 6 - Prob. 6.11PCh. 6 - (a) Determine the capacitance of an isolated...Ch. 6 - With reference to Figure 6.5, let b=6m, h=15m, and...Ch. 6 - Two=16 copper conductor (1.29 mm diameter) are...Ch. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Construct a curvilinear-square map for a coaxial...Ch. 6 - Prob. 6.18PCh. 6 - Construct a curvilinear- square map of the...Ch. 6 - Prob. 6.20PCh. 6 - The inner conductor of the transmission line shown...Ch. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - A potential field in free space is given in...Ch. 6 - A capacitor is formed from concentric spherical...Ch. 6 - Given the spherical symmetric field in free space,...Ch. 6 - Let V=z(x,y)=4e2xf(x)3y2 in a region of free space...Ch. 6 - Show that in a homogeneous medium of conductivity...Ch. 6 - What total charge must be located within a unit...Ch. 6 - Prob. 6.30PCh. 6 - For the parallel-plate capacitor shown in Figure...Ch. 6 - Prob. 6.32PCh. 6 - The functions V1 (p, , z) and V2(p, , z) both...Ch. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - By appropriate solution of Laplaces and Poissons...
Knowledge Booster
Similar questions
- Two coaxial conducting cylinders of radius 4 cm and 6 cm have a length of 4.78m. The region between the cylinders contains a layer of dielectric from p = 4 to p = 6 with ER = 8. Find the capacitance in pF.arrow_forwardFigure shows two concentric and infinitely long dielectric cylindrical shells with dielectric constants & is given by ɛ, = ɛ,- while the outer shell is non-constant and is ɛ, = ɛ, -. 7. ɛ,. The dielectric constant of the inner shell is constant and An infinite and line charge with density p, is placed at the center and along the common axis of the shells. Find a) D everywhere b) E everywhere c) Volume charge density of bound charge in both dielectric layers. a E2 PL 13arrow_forwardQ5: What is the values of (P.d)min & ( Vbr)min for a gas dielectric with constants A=14, B=362 and Y=0.04/torr.cmarrow_forward
- 1 - For a very long conducting channel viewed sectionally in the figure below, find the potentials at the indicated points. Use the symmetry to reduce the number of unknowns. 100V OV 100V OVarrow_forwardTwo 1.20 m non-conductive wires form a right angle. A segment has +2.50 µC of charge, distributed evenly along its length; while the other segment has -2.50 µC of charge, distributed uniformly along its length, as illustrated in the figure. Find the magnitude and direction of the electric field produced by these wires at point P, which is 60.0 cm from each wire.arrow_forwardQ1) A charge q = 2µC is placed at a = 0.1m from an infinite grounded conducting plane sheet. Find;i) The total charge induced on the sheet.ii) The force on the charge q.iii) The total work required to remove the charge slowly to an infinite distance from the plane.arrow_forward
- The space between the conductor plates of a paralel plate capacitor is designed with three slabs of linear dielectric material. Slab 1 has a dielectric constant ɛɛ, = 4.9, the second slab has a dielectric constant of ɛ, = 5.6, and finally the third slab has a dielectric constant of ɛz = 2.1. The free charge density on the top plate is o and on the bottom plate is - o. (a) Find the electric diplacement D in each slab. (b) Find the electric field E in each slab. (c) Calculate the potential difference between slabs and equivalent capacitance. |d/2arrow_forwardThe resistance of copper wire 235.5m long and 1 mm in diameter (at T=10°C) is 4.96586. If The resistance of capper at (201) is (1.723 x 16 ² 2 m) find the temperature coefficient of copper at (200)arrow_forward5. The cylindrical surface p = 6 cm contains the surface charge density p₁ = 10e-10lzl nC/m². a.) What is the total amount of charge present?arrow_forward
- a long straight cylindrical wire of radius r meter, in a medium of permittivity e is parallel to a horizontal plane conducting sheet. The axis of the wire is it expr metres above the sheet (a) Derive an expression of the capacitance per unit length between the wire and the sheet (b) If r = 0.3 x 10-2 m, h.= 0.12 m find the capacitance per metre length (c) If the potential difference betweenthe wire and sheet is 5 kV, find the magnitude and direction of electric stress in the medium at theupper surface of the sheet at a distance 20 cm from the axis of the wire. Take e = 1/36π x 10-9 F/m [(a) C = 2πe/ln 2h - r/r F/m (b) 0.0127 x 10-9 F/rn (c) 6.85 kV/m acting vertically downward]arrow_forwardFind the capacitance (in pF) between the two conducting spheres with at r = 9 mm andr= 18 mm. If the dielectric between them having er = 4. *arrow_forwardFigure shows a circuit and a conducting rod. A conducting rod moves with a constant velocity vperpendicular to a circuit with a current I=2.82sin(??)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,