Concept explainers
(a)
Interpretation:
The observed rotation of the
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.
Answer to Problem 6.41AP
The observed rotation of the
Explanation of Solution
The molarity of the solution of the
The specific rotation of the
The path length is
The molecular mass of
Therefore, the molar mass of
The specific optical rotation of a compound is given by the expression as shown below.
Where,
•
•
•
The molarity of the solution can be converted into the concentration by multiplying the molar mass of
Rearrange the equation (1) for the value of
Substitute the value of
Therefore, the observed rotation of the
The observed rotation of the
(b)
Interpretation:
The observed rotation of the resultant solution formed by mixture of
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.
Answer to Problem 6.41AP
The observed rotation of the resultant solution is
Explanation of Solution
The molarity of the solution of the
When
The specific rotation of the
The specific rotations of two enantiomer are same in magnitude and opposite in sign. Therefore, the specific rotation of the
The path length is
The molecular mass of
Therefore, the molar mass of
The specific optical rotation of a compound is given as,
Where,
•
•
•
The molarity of the solution can be converted into the concentration by multiplying the molar mass of
Rearrange the equation (1) for the value of
Substitute the value of
Therefore, the observed rotation of the resultant solution is
The observed rotation of the resultant solution is
(c)
Interpretation:
The enantiomeric excess of the major enantiomer in the corresponding solution is to be calculated.
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.
Answer to Problem 6.41AP
The enantiomeric excess
Explanation of Solution
The solution formed by mixture of
The percentage of
Where,
•
•
Substitute the value of
The enantiomeric excess of a sample is given as,
Substitute the value of percentage of major enantiomer in the above equation.
Therefore, the enantiomeric excess
The enantiomeric excess
Want to see more full solutions like this?
Chapter 6 Solutions
EBK ORGANIC CHEMISTRY
- 2. A graph shown below shows first ionization energies for elements from H to Ne. First ionization energy/kJ mol 2500 2000 1500 1000 500 T T T T 1 2 3 5 6 7 8 9 10 Atomic number a) Using arguments of electronic structure, explain why ionization energy of Li is much lower than that of H. (2 points) then dips at O. b) Using the same arguments, explain why ionization energy increases from B to N, and (3 points)arrow_forwardGive the name of this compound, including stereochemistry if relevant: CICH2 CH3 Br CH₂CH=CH2 Write in the product, including stereochemistry where relevant, for these reactions. See end of ch. 8, p. 301-303. 1. 03 a) 2-methyl-2-pentene -> 2. Zn, H* Br2 b) 1-ethylcyclopentene -->arrow_forwardNonearrow_forward
- 3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- Nonearrow_forwardHowever, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forward
- C Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forwardFill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forward