Free Throws Professional basketball player Draymond Green has a free-throw success rate of 70%. Suppose Green takes as many free throws as he can in one minute. Why would it be inappropriate to use the binomial model to find the probability that he makes at least 5 shots in one minute? What condition or conditions for use of the binomial model is or are not met?
Free Throws Professional basketball player Draymond Green has a free-throw success rate of 70%. Suppose Green takes as many free throws as he can in one minute. Why would it be inappropriate to use the binomial model to find the probability that he makes at least 5 shots in one minute? What condition or conditions for use of the binomial model is or are not met?
Solution Summary: The author explains that Draymond Green's probability of making at least 5 shots in a minute, if he takes as many free throws, cannot be calculated using the binomial model.
Free Throws Professional basketball player Draymond Green has a free-throw success rate of 70%. Suppose Green takes as many free throws as he can in one minute. Why would it be inappropriate to use the binomial model to find the probability that he makes at least 5 shots in one minute? What condition or conditions for use of the binomial model is or are not met?
Please solving problem2
Problem1
We consider a two-period binomial model with the following properties: each period lastsone (1) year and the current stock price is S0 = 4. On each period, the stock price doubleswhen it moves up and is reduced by half when it moves down. The annual interest rateon the money market is 25%. (This model is the same as in Prob. 1 of HW#2).We consider four options on this market: A European call option with maturity T = 2 years and strike price K = 5; A European put option with maturity T = 2 years and strike price K = 5; An American call option with maturity T = 2 years and strike price K = 5; An American put option with maturity T = 2 years and strike price K = 5.(a) Find the price at time 0 of both European options.(b) Find the price at time 0 of both American options. Compare your results with (a)and comment.(c) For each of the American options, describe the optimal exercising strategy.
Problem 1.We consider a two-period binomial model with the following properties: each period lastsone (1) year and the current stock price is S0 = 4. On each period, the stock price doubleswhen it moves up and is reduced by half when it moves down. The annual interest rateon the money market is 25%.
We consider four options on this market: A European call option with maturity T = 2 years and strike price K = 5; A European put option with maturity T = 2 years and strike price K = 5; An American call option with maturity T = 2 years and strike price K = 5; An American put option with maturity T = 2 years and strike price K = 5.(a) Find the price at time 0 of both European options.(b) Find the price at time 0 of both American options. Compare your results with (a)and comment.(c) For each of the American options, describe the optimal exercising strategy.(d) We assume that you sell the American put to a market participant A for the pricefound in (b). Explain how you act on the market…
What is the standard scores associated to the left of z is 0.1446
Chapter 6 Solutions
Pearson eText Introductory Statistics: Exploring the World Through Data -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License