EBK SYSTEM DYNAMICS
EBK SYSTEM DYNAMICS
3rd Edition
ISBN: 8220100254963
Author: Palm
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 6.36P
To determine

The modified model of the system shown in figure 1 for the gear pair attached between the motor shaft and the load. Also, compute the transfer functions ΩL(s)Vf(s) and ΩL(s)TL(s).

Expert Solution & Answer
Check Mark

Answer to Problem 6.36P

The system’s modified model comprises the following equations as shown:

vf=Rfif+LfdifdtN(Im+ILN2)dωLdt=KTif(cm+cLN2)NωLTL

Also, the transfer functions are as follows:

ΩL(s)Vf(s)=KTN1(Rf+Lfs)((Im+ILN2)s+(cm+cLN2))

ΩL(s)TL(s)=1N((Im+ILN2)s+(cm+cLN2)).

Explanation of Solution

Given:

The speed control system for the field-controlled motor has been given as shown in figure 1:

EBK SYSTEM DYNAMICS, Chapter 6, Problem 6.36P

Figure 1

This speed-control system is equipped with a gear train of ratio N such that:

ωmωL=N

Concept Used:

  1. The system model equations for this speed-control system are as follows:
  2. For field-circuit, vf=Rfif+Lfdifdt

    For rotational coupling, Idωdt=TcωTL=KTifcωTL

    Here, I and c are the effective inertia and effective damping of the system respectively.

  3. The effective inertia and the effective damping for the rotational part equipped with a gear train of ratio N are as follows:
  4. Ieff=Im+ILN2

    ceff=cm+cLN2

Calculation:

The model equations for the system are:

vf=Rfif+Lfdifdt (1)

For the inertia I,

Idωdt=TcωTL=KTifcωTL (2)

Also, on considering the effect of gearbox in a rotational system, we get

Effective inertia, Ieff=Im+ILN2 (3)

Effective damping, ceff=cm+cLN2 (4)

Thus, on using equations (2), (3) and (4), we have for effective inertia Ieff

Idωdt=TcωTL=KTifcωTL

Ieffdωmdt=KTifceffωmTL ωmωL=NN(Im+ILN2)dωLdt=KTif(cm+cLN2)NωLTL (5)

Taking Laplace transform of equation (1) and (5) while keeping zero initial conditions, we have

vf=Rfif+LfdifdtVf(s)=RfIf(s)+LfsIf(s)If(s)=1(Rf+Lfs)Vf(s) (6)

N(Im+ILN2)dωLdt=KTif(cm+cLN2)NωLTLN(Im+ILN2)sΩL(s)=KTIf(s)(cm+cLN2)NΩL(s)TL(s)((Im+ILN2)s+(cm+cLN2))NΩL(s)=KTIf(s)TL(s) (7)

From equations (6) and (7)

((Im+ILN2)s+(cm+cLN2))NΩL(s)=KTIf(s)TL(s)((Im+ILN2)s+(cm+cLN2))NΩL(s)=KT1(Rf+Lfs)Vf(s)TL(s) (8)

In case, for the multiple inputs system, for finding the transfer function for one system other inputs are temporarily set to zero that is,

For ΩL(s)Vf(s) setting TL(s)=0, therefore from equation (8)

((Im+ILN2)s+(cm+cLN2))NΩL(s)=KT1(Rf+Lfs)Vf(s)TL(s)((Im+ILN2)s+(cm+cLN2))NΩL(s)=KT1(Rf+Lfs)Vf(s)ΩL(s)Vf(s)=KTN1(Rf+Lfs)((Im+ILN2)s+(cm+cLN2))

Similarly, for ΩL(s)TL(s) setting Vf(s)=0, therefore from equation (8)

((Im+ILN2)s+(cm+cLN2))NΩL(s)=KT1(Rf+Lfs)Vf(s)TL(s)((Im+ILN2)s+(cm+cLN2))NΩL(s)=TL(s)ΩL(s)TL(s)=1N((Im+ILN2)s+(cm+cLN2)).

Conclusion:

The system’s modified model comprises the following equations as shown:

vf=Rfif+LfdifdtN(Im+ILN2)dωLdt=KTif(cm+cLN2)NωLTL

Also, the transfer functions are as follows:

ΩL(s)Vf(s)=KTN1(Rf+Lfs)((Im+ILN2)s+(cm+cLN2))

ΩL(s)TL(s)=1N((Im+ILN2)s+(cm+cLN2)).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A turbine blade made of a metal alloy (k=17 W/m-K) has a length of 5.3 cm, a perimeter of 11 cm, and a cross-sectional area of 5.13 cm². The turbine blade is exposed to hot gas from the combustion chamber at 1133°C with a convection heat transfer coefficient of 538 W/m²K. The base of the turbine blade maintains a constant temperature of 450°C and the tip is adiabatic. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Hot gas h=538 W/m²K -Turbine blade k = 17 W/m-K p=11 cm, L=5.3 cm A = 5.13 cm² -T=450°C Determine the heat transfer rate to the turbine blade. W. The heat transfer rate is
Consider a very long, slender rod. One end of the rod is attached to a base surface maintained at Tb, while the surface of the rod is exposed to an air temperature of 400°C. Thermocouples imbedded in the rod at locations 25 mm and 120 mm from the base surface register temperatures of 325°C and 375°C, respectively. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. . x1 32 x Calculate the rod base temperature (°C). The rod base temperature is °C. Air T∞
(read image)

Chapter 6 Solutions

EBK SYSTEM DYNAMICS

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license