On February 15, 2013, an asteroid moving at 19 km/s entered Earth’s atmosphere over Chelyabinsk. Russia, and exploded at an altitude of more than 20 km. This was the largest object known to have entered the atmosphere in over a century. The asteroid’s kinetic energy just before entering the atmosphere was estimated as the energy equivalent of 500 kilotons of the explosive TNT. (Kilotons [kt] and megatons [Mt] are energy units used to describe the explosive yields of nuclear weapons, and you’ll find the energy equivalent of 1 Mt in Appendix C). What was the approximate mass of the Chelyabinsk asteroid?
On February 15, 2013, an asteroid moving at 19 km/s entered Earth’s atmosphere over Chelyabinsk. Russia, and exploded at an altitude of more than 20 km. This was the largest object known to have entered the atmosphere in over a century. The asteroid’s kinetic energy just before entering the atmosphere was estimated as the energy equivalent of 500 kilotons of the explosive TNT. (Kilotons [kt] and megatons [Mt] are energy units used to describe the explosive yields of nuclear weapons, and you’ll find the energy equivalent of 1 Mt in Appendix C). What was the approximate mass of the Chelyabinsk asteroid?
On February 15, 2013, an asteroid moving at 19 km/s entered Earth’s atmosphere over Chelyabinsk. Russia, and exploded at an altitude of more than 20 km. This was the largest object known to have entered the atmosphere in over a century. The asteroid’s kinetic energy just before entering the atmosphere was estimated as the energy equivalent of 500 kilotons of the explosive TNT. (Kilotons [kt] and megatons [Mt] are energy units used to describe the explosive yields of nuclear weapons, and you’ll find the energy equivalent of 1 Mt in Appendix C). What was the approximate mass of the Chelyabinsk asteroid?
4
Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad,
the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec².
What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector
in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle
by observing a right triangle. (20 pts)
Ꮎ
2 m
Figure 3: Particle pushed by rod along vertical path.
4
Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad,
the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec².
What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector
in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle
by observing a right triangle. (20 pts)
Ꮎ
2 m
Figure 3: Particle pushed by rod along vertical path.
please solve and answer the question correctly. Thank you!!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.