
Concept explainers
(a)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(a)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the sublimation ice in your freezer.
Explanation of Solution
Sublimation is a process in which the substance in a solid state is directly converted into a vapor state without going through the liquid state. The sublimation of ice consists of a gas phase and is at a normal pressure. Therefore, the Clausius-Clapeyron equation is valid.
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
(b)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(b)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the condensation of steam into water.
Explanation of Solution
Condensation is defined as the phase change from the gaseous phase to the liquid phase. The condensation of steam involves a gas phase and at extreme pressure, it is not specified. Therefore, the Clausius-Clapeyron equation is valid.
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
(c)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(c)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the freezing of cyclohexane at
Explanation of Solution
Freezing of cyclohexane at
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(d)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(d)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the conversion of ice V to ice VI.
Explanation of Solution
The conversion of ice V to ice VI takes place at a pressure greater than
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(e)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(e)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the conversion of diatomic oxygen,
Explanation of Solution
The conversion of diatomic oxygen,
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(f)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(f)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the formation of diamonds under pressure.
Explanation of Solution
The formation of diamonds takes place under a high pressure that does not involve the gas phase. Therefore, the assumption of ideal gas behaviour fails. Hence, the Clausius-Clapeyron equation is not valid.
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(g)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(g)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is not valid for the formation of metallic solid hydrogen,
Explanation of Solution
The formation of metallic solid hydrogen,
No, the Clausius-Clapeyron equation is not valid to the given phase transition.
(h)
Interpretation:
If the Clausius-Clapeyron equation is strictly applicable to the given phase transitions is to be predicted.
Concept introduction:
The clausius-clapeyron equation states the relation between vapor pressure and the absolute temperature. It is derived by using some assumptions like the ideal gas behaviour and the change in volume of phases is equal to the volume of gas phase.
Some another assumptions include non-varying enthalpy and entropy of transition values. At high pressure, near the critical point and over range of large temperature, these assumptions get failed.
(h)

Answer to Problem 6.26E
The Clausius-Clapeyron equation is valid for the evaporation of mercury liquid,
Explanation of Solution
The evaporation of mercury liquid,
Yes, the Clausius-Clapeyron equation is applicable to the given phase transition.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK PHYSICAL CHEMISTRY
- Q1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forward
- Q8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- (10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Q3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





