Structural Steel Design (6th Edition)
Structural Steel Design (6th Edition)
6th Edition
ISBN: 9780134589657
Author: Jack C. McCormac, Stephen F. Csernak
Publisher: PEARSON
Question
Book Icon
Chapter 6, Problem 6.1PFS
To determine

The selection of the lightest available W12 section to support the axial compression loads.

Expert Solution & Answer
Check Mark

Answer to Problem 6.1PFS

W12 x 65

Explanation of Solution

Given data:

PD=150kipsPL=230kipsLC=18ftSteelused=A992,Grade50

LRFD method:

The factored load is given by

Pu=1.2PD+1.6PLwhere,PuisfactoredloadPDisaxialcompressiondeadloadPLisaxialcompressionliveload

Substituting the values,

Pu=1.2(150)+1.6(230)Pu=548k

Assume slenderness ratio as

KLr=60

From table 4-14 in the AISC manual,

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=60 , the critical stress is

ϕcfcr=34.6ksi

The required area is

Areq=Puϕcfcrwhere,AreqisrequiredareaPuisfactoredloadϕcfcriscriticalstress

Substituting the values,

Areq=54834.6Areq=15.84in.2

Try section W12×58 .

From table 1-1 in the AISC manual,

The properties of the trial section are

Area,A=17.0in.2Minimumradiusofgyration,rmin=2.51in.

The slenderness ratio is

λ=Lcrminwhere,λisslendernessratioLciseffectivelengthofcolumnrminisminimumradiusofgyration

Substituting the values,

λ=18×122.51λ=86.06

From table 4-14 in the AISC manual,

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=86 , the critical stress is

ϕcfcr=26.2ksi

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=87 , the critical stress is

ϕcfcr=25.9ksi

By interpolation, the critical stress for Fy=50ksi and slenderness ratio KLr=86.06 is

ϕcfcr=26.2+25.926.28786(86.0686)ϕcfcr=26.182ksiϕcfcr=26.18ksi

The load-carrying capacity of the section is

ϕcPn=A×ϕcfcrwhere,ϕcPnisavailableloadcarryingcapacityAisareaofsectionϕcfcriscriticalstress

Substituting the values,

ϕcPn=17×26.18ϕcPn=445.06kϕcPn<Pu445.06k<548k

The load-carrying capacity of the trial section W12×58 is less than the required capacity. Hence, the section is not safe.

Try section W12×65 .

From table 1-1 in the AISC manual,

The properties of the trial section are

Area,A=19.1in.2Minimumradiusofgyration,rmin=3.02in.

The slenderness ratio is

λ=Lcrmin

Substituting the values,

λ=18×123.02λ=71.52

From table 4-14 in the AISC manual,

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=71 , the critical stress is

ϕcfcr=31.1ksi

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=72 , the critical stress is

ϕcfcr=30.8ksi

By interpolation, the critical stress for Fy=50ksi and slenderness ratio KLr=71.52 is

ϕcfcr=31.1+30.831.17271(71.5271)ϕcfcr=30.944ksiϕcfcr=30.94ksi

The load-carrying capacity of the section is

ϕcPn=A×ϕcfcr

Substituting the values,

ϕcPn=19.1×30.94ϕcPn=590.954kϕcPn=590.95kϕcPn>Pu590.95k>548k

The load-carrying capacity of the trial section W12×65 is more than the required capacity. Hence, the section is safe.

Therefore, use section W12×65 in LRFD method.

ASD method:

The factored load is given by

Pa=PD+PLwhere,PaisfactoredloadPDisaxialcompressiondeadloadPLisaxialcompressionliveload

Substituting the values,

Pa=150+230Pa=380k

Assume slenderness ratio as

KLr=60

From table 4-14 in AISC manual,

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=60 , the critical stress is

fcrΩc=23ksi

The required area is

Areq=PafcrΩcwhere,AreqisrequiredareaPaisfactoredloadfcrΩciscriticalstress

Substituting the values,

Areq=38023Areq=16.52in.2

Try section W12×58 .

From table 1-1 in the AISC manual,

The properties of the trial section are

Area,A=17.0in.2Minimumradiusofgyration,rmin=2.51in.

The slenderness ratio is

λ=Lcrminwhere,λisslendernessratioLciseffectivelengthofcolumnrminisminimumradiusofgyration

Substituting the values,

λ=18×122.51λ=86.06

From table 4-14 in the AISC manual,

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=86 , the critical stress is

fcrΩc=17.4ksi

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=87 , the critical stress is

fcrΩc=17.2ksi

By interpolation, the critical stress for Fy=50ksi and slenderness ratio, KLr=86.06 is

fcrΩc=17.4+17.217.48786(86.0686)fcrΩc=17.388ksifcrΩc=17.39ksi

The load-carrying capacity of the section is

PnΩc=A×fcrΩcwhere,PnΩcisavailableloadcarryingcapacityAisareaofsectionfcrΩciscriticalstress

Substituting the values,

PnΩc=17×17.39PnΩc=295.63kPnΩc<Pa295.63k<380k

The load-carrying capacity of the trial section W12×58 is less than the required capacity. Hence, the section is not safe.

Try section W12×65 .

From table 1-1 in the AISC manual,

The properties of the trial section are

Area,A=19.1in.2Minimumradiusofgyration,rmin=3.02in.

The slenderness ratio is

λ=Lcrmin

Substituting the values,

λ=18×123.02λ=71.52

From table 4-14 in the AISC manual,

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=71 , the critical stress is

fcrΩc=20.7ksi

Corresponding to yield stress, Fy=50ksi and slenderness ratio, KLr=72 , the critical stress is

fcrΩc=20.5ksi

By interpolation, the critical stress for Fy=50ksi and slenderness ratio KLr=71.52 is

fcrΩc=20.7+20.520.77271(71.5286)71fcrΩc=20.596ksifcrΩc=20.60ksi

The load-carrying capacity of the section is

PnΩc=A×fcrΩc

Substituting the values,

PnΩc=19.1×20.60PnΩc=393.46kPnΩc>Pa393.46k>380k

The load-carrying capacity of the trial section W12×65 is more than the required capacity. Hence, the section is safe.

Therefore, use section W12×65 in ASD method.

Conclusion:

Select the section W12×65 in both the LRFD method and ASD method.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The following data show spot speeds collected at a section of highway located in a residential area before and after an increase in speed enforcement activities. (All speeds are in mi/h.) Before After Before After 44 27 34 21 38 36 35 21 36 23 32 37 41 40 26 26 36 40 38 33 28 32 41 23 32 27 31 24 38 31 36 23 33 22 36 26 44 35 29 23 36 27 31 20 33 18 38 22 40 25 31 26 39 31 33 32 38 33 41 35 Using the student's t-test, determine whether there was a statistically significant difference in the average speeds at a significance level of a = 0.05 (the 95-percent confidence level.) O Yes, there was a statistically significant difference in the average speeds. ○ No, there was not a statistically significant difference in the average speeds. Also report, for both the before and after cases, the mean speed, standard deviation, 85th-percentile speed, and percentage of traffic exceeding the posted speed limit of 30 mi/h. (Enter all speeds and standard deviations in mi/h. Round your 85th-percentile…
Calculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the moment distribution method. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m.  Assume the support at C is pinned, and A and B are roller supports.  E = 200 GPa, I = 250x106 mm4.
||| = 1% 11. LTE2 Voi) Vol) 1. LTE1 SEARCH 8 VYT bartleby.com/dashboard ASK √x MATH SOLV affected resale value at year 5, would that affect perceived value-in-use? How exactly? There is an error in submission of question Check it out! See if this is the solution you're looking for VIEW FULL SOLUTION Not what you're looking for? Keep submitting your original question SUBMIT QUESTION
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning