Principles Of Foundation Engineering 9e
Principles Of Foundation Engineering 9e
9th Edition
ISBN: 9781337705035
Author: Das, Braja M.
Publisher: Cengage,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 6, Problem 6.1P

For the following cases, determine the allowable gross vertical load-bearing capacity of the foundation. Use Terzaghi’s equation and assume general shear failure in soil. Use FS = 4.

Parameters for Problem 6.1

Chapter 6, Problem 6.1P, For the following cases, determine the allowable gross vertical load-bearing capacity of the

a)

Expert Solution
Check Mark
To determine

Find the allowable gross vertical load-bearing capacity of the continuous foundation.

Answer to Problem 6.1P

The allowable gross vertical load-bearing capacity of the continuous foundation is 5,195.45lb/ft2_.

Explanation of Solution

Given information;

The width (B) of the foundation is 3 ft.

The depth (Df) of the foundation is 3 ft.

The angle of friction ϕ of soil is 28°.

The cohesion c of the soil is 400lb/ft2.

The specific weight γ of soil is 110lb/ft3.

The factor of safety is (FS) is 4.0.

Calculation:

Refer Table (6.1), “Terzaghi’s bearing capacity factors” in the text book.

For ϕ=28°

Take the value of NC as 31.61.

Take the value of Nq as 17.81.

Take the value of Nγ as 13.70.

Determine the ultimate load bearing capacity qu of the foundation using the formula;

qu=cNC+qNq+12γBNγ=cNC+(γ×Df)Nq+12γBNγ=400×31.61+(110×3)17.81+12×110×3×13.70=20,781.8lb/ft2

Determine the allowable gross vertical load-bearing capacity qall using the formula;

qall=quFS=20,781.8lb/ft24=5,195.45lb/ft2

Hence, the allowable gross vertical load-bearing capacity qall of the continuous foundation is 5,195.45lb/ft2_.

b)

Expert Solution
Check Mark
To determine

Find the allowable gross vertical load-bearing capacity of the continuous foundation.

Answer to Problem 6.1P

The allowable gross vertical load-bearing capacity of the continuous foundation is 372.8kN/m2_.

Explanation of Solution

Given information;

The width (B) of the foundation is 1.5 m.

The depth (Df) of the foundation is 1.2 m.

The angle of friction ϕ of soil is 35°.

The cohesion c of the soil is zero.

The specific weight γ of soil is 17.8kN/m3.

The factor of safety is (FS) is 4.0.

Calculation:

Refer Table (6.1), “Terzaghi’s bearing capacity factors” in the text book.

For ϕ=35°

Take the value of NC as 57.75.

Take the value of Nq as 41.44.

Take the value of Nγ as 45.41.

Determine the ultimate load bearing capacity qu of the foundation using the formula;

qu=cNC+qNq+12γBNγ=cNC+(γ×Df)Nq+12γBNγ=0×57.75+(17.8×1.2)41.44+12×17.8×1.5×45.41=1,491.38kN/m2

Determine the allowable gross vertical load-bearing capacity qall using the formula;

qall=quFS=1,491.38kN/m24=372.8kN/m2

Hence, the allowable gross vertical load-bearing capacity qall of the foundation is 372.8kN/m2_.

c)

Expert Solution
Check Mark
To determine

Find the allowable gross vertical load-bearing capacity of the square foundation.

Answer to Problem 6.1P

The allowable gross vertical load-bearing capacity of the square foundation is 280.0kN/m2_.

Explanation of Solution

Given information;

The width (B) of the foundation is 3.0 m.

The depth (Df) of the foundation is 2.0 m.

The angle of friction ϕ of soil is 30°.

The cohesion c of the soil is zero.

The specific weight γ of soil is 16.5kN/m3.

The factor of safety is (FS) is 4.0.

Calculation:

Refer Table (6.1), “Terzaghi’s bearing capacity factors” in the text book.

For ϕ=30°

Take the value of NC as 37.16.

Take the value of Nq as 22.46.

Take the value of Nγ as 19.13.

Determine the ultimate load bearing capacity qu using the formula;

qu=1.3cNC+qNq+0.4γBNγ=1.3cNC+(γ×Df)Nq+0.4γBNγ=1.3(0)37.16+(16.5×2)22.46+0.4×16.5×3×19.13=1,119.95kN/m2

Determine the allowable gross vertical load-bearing capacity qall using the formula;

qall=quFS=1,119.95kN/m24280.0kN/m2

Hence, the allowable gross vertical load-bearing capacity qall of the square foundation is 280.0kN/m2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q5: Given the following system: น -3 y= [4 -2] +3u Generate a model with states that are the sum and difference of the original states.
4. Draw a stress-strain curve (in tension and compression) for a reinforced concrete beam below. Label the important parts of the plot. Find the linear elastic approximation obtained using the transformed technique, and plot over the same strain ranges. 24" 4" 20" 16" f = 8,000 psi 8- #11 bars Grade 60 steel 4" (f, = 60 ksi and E₁ = 29000 ksi)
Why is Historical Data important compared to other sourses of information when estimating construction projects?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License