AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
13th Edition
ISBN: 9781260987164
Author: Chang
Publisher: MCG CUSTOM
bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.137QP

Lime is a term that includes calcium oxide (CaO, also called quicklime) and calcium hydroxide [Ca(OH)2, also called slaked lime]. It is used in the steel industry to remove acidic impurities, in air-pollution control to remove acidic oxides such as SO2, and in water treatment. Quicklime is made industrially by heating limestone (CaCO3) above 2000°C:

CaCo 3 ( s ) CaO ( s ) + CO 2 ( g ) Δ H o = 177.8 kJ/mol

Slaked lime is produced by treating quicklime with water:

CaO ( s ) + H 2 O ( l ) Ca ( OH ) 2 ( s ) Δ H o = 65.2 kJ/mol

The exothermic reaction of quicklime with water and the rather small specific heats of both quicklime (0.946 J/g · °C) and slaked lime (1.20 J/g · °C) make it hazardous to store and transport lime in vessels made of wood. Wooden sailing ships carrying lime would occasionally catch fire when water leaked into the hold. (a) If a 500-g sample of water reacts with an equimolar amount of CaO (both at an initial temperature of 25°C), what is the final temperature of the product, Ca(OH)2? Assume that the product absorbs all of the heat released in the reaction. (b) Given that the standard enthalpies of formation of CaO and H2O are −635.6 kJ/mol and −285.8 kJ/mol, respectively, calculate the standard enthalpy of formation of Ca(OH)2.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The final temperature of the product and the standard enthalpy of formation of Ca(OH)2 has to be calculated.

Concept Introduction:

Specific heat can be defined as quantity of heat required to raise the temperature of 1g substance by 1°C.  The relationship between heat and change in temperature can be expressed by the equation given below.

q=smΔT

Where,

q= Heat added

s = Specific heat

m= Mass

ΔT= Change in temperature.

The unit of specific heat is Jg-1.°C.

Answer to Problem 6.137QP

The final temperature is 758°C .

Explanation of Solution

To calculate the moles of H2O

Mass of Water = 500g

Moles of Water = 5001molH2O18.02gH2O

=27.75mol

Moles of Water =27.75mol

To calculate the heat generated by the reaction

Moles of Water =27.75mol

Enthalpy of production of Ca(OH)2= -65.2kJ

Heat generated = 27.75molCa(OH)2×-65.2kJ1molCa(OH)2

= -1.809×103kJ

Heat generated by the reaction=-1.809×103kJ

To calculate the mass of Ca(OH)2 in 27.75molCa(OH)2

Mass of Ca(OH)2=27.75mol Ca(OH)2×74.10gCa(OH)21molCa(OH)2

= 2.056×103g

Mass of Ca(OH)2=2.056×103g

To calculate the final temperature

q=smΔT

Rearranging we get,

ΔT=qmsΔT=1.809×106J(2.056×103g)(1.20Jg-1°C)=733°CΔT=Tinitial-TfinalΔT=(733+25)°CΔT=758°C

Final temperature of the product = 758°C

(b)

Expert Solution
Check Mark
Interpretation Introduction

Concept Introduction:

The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (ΔHf°).  The standard enthalpy of formation is used to determine the standard enthalpies of compound and element.

The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.

 The equation for determining the standard enthalpies of compound and element can be given by,

ΔH°reaction=nΔH°f(products)-mΔH°f(reactants)

Answer to Problem 6.137QP

The standard enthalpy of formation is -986.6kJmol-1 .

Explanation of Solution

The reaction can be given as,

CaO(s)+H2O(l)Ca(OH)2(s)

Enthalpy of reaction = -65.2kJmol-1

Standard enthalpy of formation of CaO=-635.6kJmol1

Standard enthalpy of formation of H2O=-285.8kJmol-1

Standard enthalpy of formation of Ca(OH)2,

ΔHreaction=ΔH°f[Ca(OH)2]-[ΔH°f(CaO)+ΔH°f(H2O)]-65.2kJmol-1=ΔH°f[Ca(OH)2]-[(1)(-635.6kJmol-1)+(1)(-285.8kJmol-1)]ΔH°f[Ca(OH)2]=-986.6kJmol-1

Standard enthalpy of formation of Ca(OH)2=-986.6kJmol-1

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
bre The reaction sequence shown in Scheme 5 demonstrates the synthesis of a substituted benzene derivative Q. wolsd works 2 NH2 NaNO2, HCI (apexe) 13× (1 HNO3, H2SO4 C6H5CIN2 0°C HOTE CHINO₂ N O *O₂H ( PO Q Я Scheme 5 2 bag abouoqmics to sounde odi WEIC (i) Draw the structure of intermediate O. [2 marks] to noitsmot od: tot meinedogm, noit so oft listsb ni zaupaib bas wa (ii) Draw the mechanism for the transformation of aniline N to intermediate O. Spoilage (b) [6 marks] (iii) Identify the reagent X used to convert compound O to the iodinated compound [tom E P. vueimado oilovonsa ni moitos nolisbnolov ayd toes ai tedw nisiqx (iv) Identify the possible structures of compound Q. [2 marks] [2 marks] [shom 2] (v) bus noires goiribbeolovo xnivollot adj to subora sidab Draw the mechanism for the transformation of intermediate P to compound Q. [5 marks] vi (vi) Account for the regiochemical outcome observed in the reaction forming compound Q. [3 marks]
PROBLEM 4 Solved Show how 1-butanol can be converted into the following compounds: a. PROBLEM 5+ b. d. -C= N
Which alkene is the major product of this dehydration? OH H2SO4 heat

Chapter 6 Solutions

AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM

Ch. 6.4 - Given the thermochemical equation...Ch. 6.4 - Calculate U for the following reaction at 1 atm...Ch. 6.5 - An iron bar of mass 869 g cools from 94C to 5C....Ch. 6.5 - A quantity of 1.922 g of methanol (CH3OH) was...Ch. 6.5 - A 30.14-g stainless steel ball bearing at 117.82C...Ch. 6.5 - A quantity of 4.00 102 mL of 0.600 M HNO3 is...Ch. 6.5 - A 1-g sample of Al and a 1-g sample of Fe are...Ch. 6.5 - A 1.252 g-sample of cyclohexanol (C6H12O) was...Ch. 6.5 - A 100.0-g sample of an unknown metal at 125C is...Ch. 6.6 - Calculate the standard enthalpy of formation of...Ch. 6.6 - Benzene (C6H6) burns in air to produce carbon...Ch. 6.6 - Which of the following does not have Hfo=0 at 25C?...Ch. 6.6 - Explain why reactions involving reactant compounds...Ch. 6.6 - Using data from Appendix 2, calculate Hrxno for...Ch. 6.6 - Given the following information...Ch. 6.7 - Use the data in Appendix 2 to calculate the heat...Ch. 6 - Define these terms: system, surroundings, open...Ch. 6 - What is heat? How does heat differ from thermal...Ch. 6 - What are the units for energy commonly employed in...Ch. 6 - A truck initially traveling at 60 km per hour is...Ch. 6 - These are various forms of energy: chemical, heat,...Ch. 6 - Define these terms: thermochemistry, exothermic...Ch. 6 - Stoichiometry is based on the law of conservation...Ch. 6 - Describe two exothermic processes and two...Ch. 6 - Decomposition reactions are usually endothermic,...Ch. 6 - On what law is the first law of thermodynamics...Ch. 6 - Explain what is meant by a state function. Give...Ch. 6 - The internal energy of an ideal gas depends only...Ch. 6 - Consider these changes: (a) Hg(l)Hg(g) (b)...Ch. 6 - A sample of nitrogen gas expands in volume from...Ch. 6 - A gas expands in volume from 26.7 mL to 89.3 mL at...Ch. 6 - A gas expands and does P-V work on the...Ch. 6 - The work done to compress a gas is 74 J. As a...Ch. 6 - Calculate the work done when 50.0 g of tin...Ch. 6 - Calculate the work done in joules when 1.0 mole of...Ch. 6 - Prob. 6.21QPCh. 6 - In writing thermochemical equations, why is it...Ch. 6 - Explain the meaning of this thermochemical...Ch. 6 - Consider this reaction:...Ch. 6 - The first step in the industrial recovery of zinc...Ch. 6 - Determine the amount of heat (in kJ) given off...Ch. 6 - Consider the reaction...Ch. 6 - Consider the reaction...Ch. 6 - What is the difference between specific heat and...Ch. 6 - Define calorimetry and describe two commonly used...Ch. 6 - Consider the following data: Metal Al Cu Mass (g)...Ch. 6 - A piece of silver of mass 362 g has a heat...Ch. 6 - A 6.22-kg piece of copper metal is heated from...Ch. 6 - Calculate the amount of heat liberated (in kJ)...Ch. 6 - A sheet of gold weighing 10.0 g and at a...Ch. 6 - To a sample of water at 23.4C in a...Ch. 6 - A 0.1375-g sample of solid magnesium is burned in...Ch. 6 - A quantity of 85.0 mL of 0.900 M HCl is mixed with...Ch. 6 - What is meant by the standard-state condition?Ch. 6 - How are the standard enthalpies of an element and...Ch. 6 - What is meant by the standard enthalpy of a...Ch. 6 - Write the equation for calculating the enthalpy of...Ch. 6 - State Hesss law. Explain, with one example, the...Ch. 6 - Describe how chemists use Hesss law to determine...Ch. 6 - Which of the following standard enthalpy of...Ch. 6 - The Hfo values of the two allotropes of oxygen, O2...Ch. 6 - Which is the more negative quantity at 25C: Hfo...Ch. 6 - Predict the value of Hfo (greater than, less than,...Ch. 6 - In general, compounds with negative Hfo values are...Ch. 6 - Suggest ways (with appropriate equations) that...Ch. 6 - Calculate the heat of decomposition for this...Ch. 6 - The standard enthalpies of formation of ions in...Ch. 6 - Calculate the heats of combustion for the...Ch. 6 - Calculate the heats of combustion for the...Ch. 6 - Methanol, ethanol, and n-propanol are three common...Ch. 6 - The standard enthalpy change for the following...Ch. 6 - From the standard enthalpies of formation,...Ch. 6 - Pentaborane-9, B5H9, is a colorless, highly...Ch. 6 - Determine the amount of heat (in kJ) given off...Ch. 6 - At 850C, CaCO3 undergoes substantial decomposition...Ch. 6 - From these data,...Ch. 6 - From the following data,...Ch. 6 - From the following heats of combustion,...Ch. 6 - Calculate the standard enthalpy change for the...Ch. 6 - Prob. 6.65QPCh. 6 - Why is the lattice energy of a solid always a...Ch. 6 - Consider two ionic compounds A and B. A has a...Ch. 6 - Mg2+ is a smaller cation than Na+ and also carries...Ch. 6 - Why is it dangerous to add water to a concentrated...Ch. 6 - Which of the following does not have Hfo=O at 25C?...Ch. 6 - Calculate the expansion work done when 3.70 moles...Ch. 6 - Prob. 6.73QPCh. 6 - Given the thermochemical equations:...Ch. 6 - The standard enthalpy change H for the thermal...Ch. 6 - Hydrazine, N2H4, decomposes according to the...Ch. 6 - A quantity of 2.00 102 mL of 0.862 M HCl is mixed...Ch. 6 - A 3.53-g sample of ammonium nitrate (NH4NO3) was...Ch. 6 - Consider the reaction...Ch. 6 - Prob. 6.80QPCh. 6 - Prob. 6.81QPCh. 6 - A 2.10-mole sample of crystalline acetic acid,...Ch. 6 - Prob. 6.83QPCh. 6 - You are given the following data:...Ch. 6 - A gaseous mixture consists of 28.4 mole percent of...Ch. 6 - When 2.740 g of Ba reacts with O2 at 298 K and 1...Ch. 6 - Methanol (CH3OH) is an organic solvent and is also...Ch. 6 - A 44.0-g sample of an unknown metal at 99.0C was...Ch. 6 - Using the data in Appendix 2, calculate the...Ch. 6 - Producer gas (carbon monoxide) is prepared by...Ch. 6 - Prob. 6.91QPCh. 6 - Prob. 6.92QPCh. 6 - Ethanol (C2H5OH) and gasoline (assumed to be all...Ch. 6 - The combustion of what volume of ethane (C2H6),...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - Explain the cooling effect experienced when...Ch. 6 - For which of the following reactions does...Ch. 6 - Prob. 6.99QPCh. 6 - A quantity of 0.020 mole of a gas initially at...Ch. 6 - Prob. 6.101QPCh. 6 - Prob. 6.102QPCh. 6 - Prob. 6.103QPCh. 6 - Prob. 6.104QPCh. 6 - A person ate 0.50 pound of cheese (an energy...Ch. 6 - Prob. 6.106QPCh. 6 - Prob. 6.107QPCh. 6 - The enthalpy of combustion of benzoic acid...Ch. 6 - Prob. 6.109QPCh. 6 - Prob. 6.110QPCh. 6 - Glaubers salt, sodium sulfate decahydrate (Na2SO4 ...Ch. 6 - A balloon 16 m in diameter is inflated with helium...Ch. 6 - Acetylene (C2H2) can be hydrogenated (reacting...Ch. 6 - Prob. 6.114QPCh. 6 - An excess of zinc metal is added to 50.0 mL of a...Ch. 6 - (a) A person drinks four glasses of cold water...Ch. 6 - Prob. 6.118QPCh. 6 - Why are cold, damp air and hot, humid air more...Ch. 6 - Prob. 6.120QPCh. 6 - Prob. 6.121QPCh. 6 - Prob. 6.122QPCh. 6 - Prob. 6.123QPCh. 6 - Determine the standard enthalpy of formation of...Ch. 6 - Prob. 6.125QPCh. 6 - Ice at 0C is placed in a Styrofoam cup containing...Ch. 6 - Prob. 6.127QPCh. 6 - Prob. 6.128QPCh. 6 - Calculate the internal energy of a Goodyear blimp...Ch. 6 - Prob. 6.131QPCh. 6 - Acetylene (C2H2) can be made by reacting calcium...Ch. 6 - The average temperature in deserts is high during...Ch. 6 - From a thermochemical point of view, explain why a...Ch. 6 - Calculate the U for the following reaction at 298...Ch. 6 - Lime is a term that includes calcium oxide (CaO,...Ch. 6 - A 4.117-g impure sample of glucose (C6H12O6) was...Ch. 6 - Construct a table with the headings q, w, U, and...Ch. 6 - The combustion of 0.4196 g of a hydrocarbon...Ch. 6 - Metabolic activity in the human body releases...Ch. 6 - Give an example for each of the following...Ch. 6 - From the following data, calculate the heat of...Ch. 6 - Starting at A, an ideal gas undergoes a cyclic...Ch. 6 - For reactions in condensed phases (liquids and...Ch. 6 - The diagrams (a)(d) represent various physical and...Ch. 6 - A 20.3-g sample of an unknown metal and a 28.5-g...Ch. 6 - Prob. 6.148QPCh. 6 - Prob. 6.149QPCh. 6 - The fastest serve in tennis is about 150 mph. Can...Ch. 6 - Prob. 6.151QPCh. 6 - It has been estimated that 3 trillion standard...Ch. 6 - Prob. 6.153QPCh. 6 - Prob. 6.154QPCh. 6 - Prob. 6.155QPCh. 6 - We hear a lot about how the burning of...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY