FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
12
An oil pump operating at steady state delivers oil at a rate of 13 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled
as incompressible, has a density of 85 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant
elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its
surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump.
Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.
Step 1
Your answer is correct.
Determine the velocity of the oil at the exit of the pump, in ft/s.
V₂ = 28.064
Hint
Step 2
* Your answer is incorrect.
ft/s
Determine the power required for the pump, in hp.
Win =
1.60155105
eTextbook and Media
hp
Attempts: 1 of 4 used
An oil pump operating at steady state delivers oil at a rate of 10 Ib/s through a 1-in.-diameter exit pipe. The oil, which can be modeled
as incompressible, has a density of 100 lb/ft and experiences a pressure rise from inlet to exit of 40 Ibf/in?. There is no significant
elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its
surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump.
Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.
Knowledge Booster
Similar questions
- An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Determine the velocity of the oil at the exit of the pump, in ft/s. Your answer is correct. V₂ = 26.192 Hint Step 2 * Your answer is incorrect. Win ft/s Determine the power required for the pump, in hp. i7.73 hp Attempts: 1 of 4 usedarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Your answer is correct. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = 26.192 Hint Step 2 ft/s * Your answer is incorrect. Determine the power required for the pump, in hp. i 1.49595 hp Attempts: 1 of 4 usedarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Determine the power required for the pump, in hp.arrow_forward
- An oil pump operating at steady state delivers oil at a rate of 11 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 Ib/ft³ and experiences a pressure rise from inlet to exit of 40 Ibf/in?. There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.arrow_forwardThe figure below shows a turbine-driven pump that provides water to a mixing chamber located dz = 5 m higher than the pump, where in = 50 kg/s. Steady-state operating data for the turbine and pump are labeled on the figure. Heat transfer from the water to its surroundings occurs at a rate of 2 kW. For the turbine, heat transfer with the surroundings and potential energy effects are negligible. Kinetic energy effects at all numbered states can be ignored. h2 = 417.69 kJ/kg Mixing chamber Ocy = 2 kW Steam P3 = 30 bar T3 = 400°C dz Turbine Pump P4 = 5 bar T4 = 180°C Saturated liquid water m, Pi = 1 bar Determine: (a) the magnitude of the pump power, in kW. (b) the mass flow rate of steam, in kg/s, that flows through the turbine.arrow_forwardAn oil pump operating at steady state delivers oil at a rate of 13 lb/s through a 1-in-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 55 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.arrow_forward
- An oil pump operating at steady state delivers oil at a rate of 11 lb/s through a 1-in-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 55 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 * Your answer is incorrect. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = i 32.08 ft/sarrow_forwardT-12arrow_forwardAn oil pump operating at steady state delivers oil at a rate of 6 kg/s through a 2.5-cm- diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 1360 kg/m³ and experiences a pressure rise from inlet to exit of 2.75 bar. There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. a. Determine the velocity of the oil at the exit of the pump, in m/s. b. Determine the power required for the pump, in W. Oil Pump Mflow=6kg/s Poil 1360 kg/m³ P2-p1-2.75 bar T₂-T₁=0 D=2.5 cmarrow_forward
- The figure below shows a turbine-driven pump that provides water to a mixing chamber located dz = 25 m higher than the pump, where in = 20 kg/s. Steady-state operating data for the turbine and pump are labeled on the figure. Heat transfer from the water to its surroundings occurs at a rate of 2 kW. For the turbine, heat transfer with the surroundings and potential energy effects are negligible. Kinetic energy effects at all numbered states can be ignored. h = 417.69 kJ/kg Mixing chamber Ocy = 2 kW Steam P3 = 30 bar T3 = 400°C dz Wev Turbine Pump P4 = 5 bar 4 T = 180°C Saturated liquid water m, PL = 1 bar Determine: (a) the magnitude of the pump power, in kW. (b) the mass flow rate of steam, in kg/s, that flows through the turbine.arrow_forwardThe figure below shows a turbine-driven pump that provides water to a mixing chamber located dz = 25 m higher than the pump, where in = 80 kg/s. Steady-state operating data for the turbine and pump are labeled on the figure. Heat transfer from the water to its surroundings occurs at a rate of 2 kW. For the turbine, heat transfer with the surroundings and potential energy effects are negligible. Kinetic energy effects at all numbered states can be ignored. h = 417.69 kJ/kg Mixing chamber Oey = 2 kW Steam P3 = 30 bar T3= 400°C dz Turbine Pump P4 = 5 bar T= 180°C 14 Saturated liquid water m, Pi = 1 bar Determine: (a) the magnitude of the pump power, in kW. (b) the mass flow rate of steam, in kg/s, that flows through the turbine.arrow_forwardSolve for velocity in ft/s and the power required in hp. Step by step solution thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY