FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -12oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored.Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
The volume metric flow rate of .05262 m^3/s is correct. My power input is incorrect. See attached
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°C with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 7 bar, 70°C. Changes in kinetic and potential energy from inlet to exit can be ignored.
1.Determine the volumetric flow rate at the exit, in m3/s
2. Determine the compressor power, in kW.
A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200°C, 1 bar. During an interval of 10 minutes, the
paddle wheel transfers energy to the air at a rate of 1 kW. During this time interval, the air also receives energy by heat transfer at a
rate of 0.5 kW. These are the only energy transfers. Assume the ideal gas model for the air, and no overall changes in kinetic or
potential energy. Do not assume specific heats are constant.
Determine the change in specific internal energy for the air, in kJ/kg, and the final temperature of the air, in °C.
Knowledge Booster
Similar questions
- pls answer the givenarrow_forwardTwo kg of water is contained in a piston-cylinder assembly, initially at 10 bar and O °C. The water is slowly heated at constant pressure to a final state. If the heat ansfer for the process is 1740 kJ, determine the temperature at the final state, in °C, d the work, in kJ. Kinetic and potential energy effects are negligible. Hint: in this oblem, the transferred heat equals the enthalpy change.arrow_forwardAir is compressed in a piston-cylinder assembly from p₁ = 10 lb/in², T₁ = 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process described by pv¹.30 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu. Step 1 Your answer is correct. Determine the work, in Btu. W12 = -52.4075 Hint Step 2 * Your answer is incorrect. Determine the heat transfer, in Btu. Q12-13.4475 Btu eTextbook and Media Btu Attempts: 1 of 4 usedarrow_forward
- Air is compressed in a piston-cylinder assembly from p₁ = 25 lb/in², T₁ = 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process described by pv¹.25 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu. Step 1 * Your answer is incorrect. Determine the work, in Btu. W12= i -658.845 Btuarrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 20 lb/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = i Save for Later lb Attempts: 0 of 4 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forward
- Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = 0.60792 Hint Your answer is correct. Step 2 * Your answer is incorrect. Determine the work, in Btu. W12= -53.4318 eTextbook and Media Hint lb Btu Attempts: 1 of 4 used Assistance Usedarrow_forward2. Water is heated in a boiler tube at steady state from an inlet state of 500 kPa 25 deg-C (State-1) to an exit state of 500 kPa, 500 deg-C (State-4). Neglect changes in ke and pe, and use the PC model to answer these questions. If the mass flow rate of water is 5 kg/s Hide Details (a). Determine the rate of heat transfer in kW KW Enter answer as a decimal number (3.14, 5.0, -2.78, 5, for example) (b) What percent of the heat transfer is used to to boil the water from saturated liquid to saturated vapor state? Enter answer as a decimal number (3.14, 5.0, -2.78, 5, for example) (c) What percent of the heat transfer is used to heat up water to saturated liquid state? Enter answer as a decimal number (3.14, 5.0, -278, 5, for example)arrow_forwardplease help with this question, from thermodynamics A quantity of a certain perfect gas is compressed from an initial state of 0.084 m3, 1 bar to a final state of 0.034 m3, 3.7 bar. The specific heat at constant volume is 0.724 kJ/kg K, and the specific heat at constant pressure is 1.02 kJ/kg K. The observed temperature rise is 139 K. Calculate the increase of internal energy of the gas to two decimal places with the SI unit.arrow_forward
- 3.32 WP Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 400°C. For the water, determine the heat transfer, in kJ per kg of water. Kinetic and potential energy effects can be ignored.arrow_forward1. A tank containing 250 kg of kerosene is to be heated from 20°C to 40 °C in 15 minutes, using 4 bar steam. The kerosene has a specific heat capacity of 2.0 kJ/kg-°C.over that temperature range. ha at 4.0 bar is 2,108.1 kJ/kg. The tank is well insulated and heat losses are negligible. Determine the rate of heat transfer required and steam flow.arrow_forwardPlease help me solve this problem. I need it asap. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY