FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A 30-lb iron casting, initially at 1500°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be
modeled as incompressible with specific heats 0.10 Btu/lb. °R, and 0.45 Btu/lb. °R, respectively.
(a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F.
Ignore heat transfer between the system and its surroundings.
T+= 257.4978
(b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R.
Ignore heat transfer between the system and its surroundings.
0 =
°F
i
Btu/°R
In a closed and rigid tank, five kg of oxygen (O2), initially at 430°C, exists. Heat transfer from the system to the surroundings occurs at 765 kJ. Assuming the ideal gas model and taking specific heats as constant at 600 K, determine the final temperature, in °C.
Air enters a compressor operating at steady state at 15 lbf/in.2, 80°F and exits at 375°F. Stray heat transfer and kinetic and potential energy effects are negligible.Assuming the ideal gas model for the air, determine the maximum theoretical pressure at the exit, in lbf/in.2
Knowledge Booster
Similar questions
- A 300-lb iron casting, initially at 600°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb. °R, and 0.45 Btu/lb. °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. T₁ = i (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. J = °F Mi Btu/ºRarrow_forwardA 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf = i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°R Touthoolk ond Mediearrow_forwardA 300-lb iron casting, initially at 1500°F, is quenched in a tank filled with 2121 Ib of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb - °R, and 0.45 Btu/lb - °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. T= i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. Btu/°Rarrow_forward
- A system consists of 2 kg of carbon dioxide gas initially at state 1, where p₁ = 1 bar, T₁ = 300 K. The system undergoes a power cycle consisting of the following processes: Process 1-2: Constant volume to p2 = 6 bar. Process 2-3: Expansion with pv¹.4 = constant. Process 3-1: Constant-pressure compression. Assuming the ideal gas model and neglecting kinetic and potential energy effects, calculate thermal efficiency.arrow_forwardAir within a piston-cylinder assembly, initially at 50 lbf/ in.², 510°R, and a volume of 6 ft³, is compressed isentropically to a final volume of 3 ft³. Assuming the ideal gas model with k = 1.4 for the air, determine the: (a) mass, in lb. (b) final pressure, in lbf/in.² (c) final temperature, in °R. (d) work, in Btu.arrow_forwardOne-tenth kmol of carbon monoxide (CO) in a piston- cylinder assembly undergoes a process from p1= 150 kPa, T1 = 300 K to p2 = 500 kPa, T2 = 470 K. For the process, W = -300 kJ. Employing the ideal gas model, determine: (a) the heat transfer, in kJ. (b) the change in entropy, in kJ/K.arrow_forward
- Air within a piston–cylinder assembly, initially at 33 lbf/ in.2, 510°R, and a volume of 6 ft3, is compressed isentropically to a final volume of 3 ft3.Assuming the ideal gas model with k = 1.4 for the air, determine the:(a) mass, in lb.(b) final pressure, in lbf/in.2(c) final temperature, in °R.(d) work, in Btu.arrow_forwardAir contained in a rigid, insulated tank fitted with a paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m³, is stirred until its temperature is 600 K. Assuming the ideal gas model for the air, and ignoring kinetic and potential energy, determine: (a) the final pressure, in bar. (b) the work, in kJ. (c) the amount of entropy produced, in kJ/K. Solve using: (1) data from Table A-22. (2) constant c, read from Table A-20 at 400 K.arrow_forwardAir contained in a rigid, insulated tank fitted with a paddle wheel, initially at 4 bar, 40 °C, and a volume of 0.2 m, is stirred until its temperature is 353 °C. Assuming the ideal gas model with k = 1.4 for the air, determine (a) the final pressure, in bar (b) the work, in kJ (c) the amount of entropy produced, in kJ/K. Ignore kinetic and potential energy.arrow_forward
- Thermodynamics, please help and show all work please.arrow_forwardHelium contained in a closed, rigid tank, initially at 60°C, 2 bar, and a volume of 1.9 m³, is heated to a final pressure of 6 bar. Assume the ideal gas model for the helium. Kinetic and potential energy effects can be ignored. Determine the mass of the helium, in kg, and the heat transfer, in kJ. mass of helium, m = Heat transfer, Q₁2 = 578.102 x kg kJarrow_forwardSaturated liquid water flows isothermally at 20 degrees Celsius through a one inlet, one-exit duct operating at steady state, steady flow. The inlet and exit diameter of the duct are 8 cm and 13 cm, respectively. At the inlet, the velocity is 6 m/s. What is the rate of kinetic energy, in Watts, of the water exiting the duct, KE2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY