Chemistry
12th Edition
ISBN: 9780078021510
Author: Raymond Chang Dr., Kenneth Goldsby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.112QP
A balloon 16 m in diameter is inflated with helium at 18°C. (a) Calculate the mass of He in the balloon, assuming ideal behavior. (b) Calculate the work done (in joules) during the inflation process if the atmospheric pressure is 98.7 kPa.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Chemistry
Ch. 6.2 - Classify each of the following as an open system,...Ch. 6.3 - A gas expands from 264 mL to 971 mL at constant...Ch. 6.3 - A gas expands and does P-V work on the...Ch. 6.3 - Two ideal gases at the same temperature and...Ch. 6.4 - Calculate the heat evolved when 266 g of white...Ch. 6.4 - What is U for the formation of 1 mole of CO at 1...Ch. 6.4 - Which of the constant-pressure processes shown...Ch. 6.5 - An iron bar of mass 869 g cools from 94C to 5C....Ch. 6.5 - A quantity of 1.922 g of methanol (CH3OH) was...Ch. 6.5 - A 30.14-g stainless steel ball bearing at 117.82C...
Ch. 6.5 - A quantity of 4.00 102 mL of 0.600 M HNO3 is...Ch. 6.5 - A 1-g sample of Al and a 1-g sample of Fe are...Ch. 6.6 - Which of the following does not have Hfo=0 at 25C?...Ch. 6.6 - Calculate the standard enthalpy of formation of...Ch. 6.6 - Benzene (C6H6) burns in air to produce carbon...Ch. 6.6 - Explain why reactions involving reactant compounds...Ch. 6.7 - Use the data in Appendix 2 to calculate the heat...Ch. 6 - Define these terms: system, surroundings, open...Ch. 6 - What is heat? How does heat differ from thermal...Ch. 6 - What are the units for energy commonly employed in...Ch. 6 - A truck initially traveling at 60 km per hour is...Ch. 6 - These are various forms of energy: chemical, heat,...Ch. 6 - Define these terms: thermochemistry, exothermic...Ch. 6 - Stoichiometry is based on the law of conservation...Ch. 6 - Describe two exothermic processes and two...Ch. 6 - Decomposition reactions are usually endothermic,...Ch. 6 - On what law is the first law of thermodynamics...Ch. 6 - Explain what is meant by a state function. Give...Ch. 6 - The internal energy of an ideal gas depends only...Ch. 6 - Consider these changes: (a) Hg(l)Hg(g) (b)...Ch. 6 - A sample of nitrogen gas expands in volume from...Ch. 6 - A gas expands in volume from 26.7 mL to 89.3 mL at...Ch. 6 - A gas expands and does P-V work on the...Ch. 6 - The work done to compress a gas is 74 J. As a...Ch. 6 - Calculate the work done when 50.0 g of tin...Ch. 6 - Calculate the work done in joules when 1.0 mole of...Ch. 6 - Prob. 6.21QPCh. 6 - In writing thermochemical equations, why is it...Ch. 6 - Explain the meaning of this thermochemical...Ch. 6 - Consider this reaction:...Ch. 6 - The first step in the industrial recovery of zinc...Ch. 6 - Determine the amount of heat (in kJ) given off...Ch. 6 - Consider the reaction...Ch. 6 - Consider the reaction...Ch. 6 - What is the difference between specific heat and...Ch. 6 - Define calorimetry and describe two commonly used...Ch. 6 - Consider the following data: Metal Al Cu Mass (g)...Ch. 6 - A piece of silver of mass 362 g has a heat...Ch. 6 - A 6.22-kg piece of copper metal is heated from...Ch. 6 - Calculate the amount of heat liberated (in kJ)...Ch. 6 - A sheet of gold weighing 10.0 g and at a...Ch. 6 - To a sample of water at 23.4C in a...Ch. 6 - A 0.1375-g sample of solid magnesium is burned in...Ch. 6 - A quantity of 85.0 mL of 0.900 M HCl is mixed with...Ch. 6 - What is meant by the standard-state condition?Ch. 6 - How are the standard enthalpies of an element and...Ch. 6 - What is meant by the standard enthalpy of a...Ch. 6 - Write the equation for calculating the enthalpy of...Ch. 6 - State Hesss law. Explain, with one example, the...Ch. 6 - Describe how chemists use Hesss law to determine...Ch. 6 - Which of the following standard enthalpy of...Ch. 6 - The Hfo values of the two allotropes of oxygen, O2...Ch. 6 - Which is the more negative quantity at 25C: Hfo...Ch. 6 - Predict the value of Hfo (greater than, less than,...Ch. 6 - In general, compounds with negative Hfo values are...Ch. 6 - Suggest ways (with appropriate equations) that...Ch. 6 - Calculate the heat of decomposition for this...Ch. 6 - The standard enthalpies of formation of ions in...Ch. 6 - Calculate the heats of combustion for the...Ch. 6 - Calculate the heats of combustion for the...Ch. 6 - Methanol, ethanol, and n-propanol are three common...Ch. 6 - The standard enthalpy change for the following...Ch. 6 - From the standard enthalpies of formation,...Ch. 6 - Pentaborane-9, B5H9, is a colorless, highly...Ch. 6 - Determine the amount of heat (in kJ) given off...Ch. 6 - At 850C, CaCO3 undergoes substantial decomposition...Ch. 6 - From these data,...Ch. 6 - From the following data,...Ch. 6 - From the following heats of combustion,...Ch. 6 - Calculate the standard enthalpy change for the...Ch. 6 - Prob. 6.65QPCh. 6 - Why is the lattice energy of a solid always a...Ch. 6 - Consider two ionic compounds A and B. A has a...Ch. 6 - Mg2+ is a smaller cation than Na+ and also carries...Ch. 6 - Why is it dangerous to add water to a concentrated...Ch. 6 - Which of the following does not have Hfo=O at 25C?...Ch. 6 - Calculate the expansion work done when 3.70 moles...Ch. 6 - Prob. 6.73QPCh. 6 - Given the thermochemical equations:...Ch. 6 - The standard enthalpy change H for the thermal...Ch. 6 - Hydrazine, N2H4, decomposes according to the...Ch. 6 - A quantity of 2.00 102 mL of 0.862 M HCl is mixed...Ch. 6 - A 3.53-g sample of ammonium nitrate (NH4NO3) was...Ch. 6 - Consider the reaction...Ch. 6 - Prob. 6.80QPCh. 6 - Prob. 6.81QPCh. 6 - A 2.10-mole sample of crystalline acetic acid,...Ch. 6 - Prob. 6.83QPCh. 6 - You are given the following data:...Ch. 6 - A gaseous mixture consists of 28.4 mole percent of...Ch. 6 - When 2.740 g of Ba reacts with O2 at 298 K and 1...Ch. 6 - Methanol (CH3OH) is an organic solvent and is also...Ch. 6 - A 44.0-g sample of an unknown metal at 99.0C was...Ch. 6 - Using the data in Appendix 2, calculate the...Ch. 6 - Producer gas (carbon monoxide) is prepared by...Ch. 6 - Prob. 6.91QPCh. 6 - Prob. 6.92QPCh. 6 - Ethanol (C2H5OH) and gasoline (assumed to be all...Ch. 6 - The combustion of what volume of ethane (C2H6),...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - Explain the cooling effect experienced when...Ch. 6 - For which of the following reactions does...Ch. 6 - Prob. 6.99QPCh. 6 - A quantity of 0.020 mole of a gas initially at...Ch. 6 - Prob. 6.101QPCh. 6 - Prob. 6.102QPCh. 6 - Prob. 6.103QPCh. 6 - Prob. 6.104QPCh. 6 - A person ate 0.50 pound of cheese (an energy...Ch. 6 - Prob. 6.106QPCh. 6 - Prob. 6.107QPCh. 6 - The enthalpy of combustion of benzoic acid...Ch. 6 - Prob. 6.109QPCh. 6 - Prob. 6.110QPCh. 6 - Glaubers salt, sodium sulfate decahydrate (Na2SO4 ...Ch. 6 - A balloon 16 m in diameter is inflated with helium...Ch. 6 - Acetylene (C2H2) can be hydrogenated (reacting...Ch. 6 - Prob. 6.114QPCh. 6 - An excess of zinc metal is added to 50.0 mL of a...Ch. 6 - (a) A person drinks four glasses of cold water...Ch. 6 - Prob. 6.118QPCh. 6 - Why are cold, damp air and hot, humid air more...Ch. 6 - Prob. 6.120QPCh. 6 - Prob. 6.121QPCh. 6 - Prob. 6.122QPCh. 6 - Prob. 6.123QPCh. 6 - Determine the standard enthalpy of formation of...Ch. 6 - Prob. 6.125QPCh. 6 - Ice at 0C is placed in a Styrofoam cup containing...Ch. 6 - Prob. 6.127QPCh. 6 - Prob. 6.128QPCh. 6 - Calculate the internal energy of a Goodyear blimp...Ch. 6 - Prob. 6.131QPCh. 6 - Acetylene (C2H2) can be made by reacting calcium...Ch. 6 - The average temperature in deserts is high during...Ch. 6 - From a thermochemical point of view, explain why a...Ch. 6 - Calculate the U for the following reaction at 298...Ch. 6 - Lime is a term that includes calcium oxide (CaO,...Ch. 6 - A 4.117-g impure sample of glucose (C6H12O6) was...Ch. 6 - Construct a table with the headings q, w, U, and...Ch. 6 - The combustion of 0.4196 g of a hydrocarbon...Ch. 6 - Metabolic activity in the human body releases...Ch. 6 - Give an example for each of the following...Ch. 6 - From the following data, calculate the heat of...Ch. 6 - Starting at A, an ideal gas undergoes a cyclic...Ch. 6 - For reactions in condensed phases (liquids and...Ch. 6 - The diagrams (a)(d) represent various physical and...Ch. 6 - A 20.3-g sample of an unknown metal and a 28.5-g...Ch. 6 - Prob. 6.148QPCh. 6 - Prob. 6.149QPCh. 6 - The fastest serve in tennis is about 150 mph. Can...Ch. 6 - Prob. 6.151QPCh. 6 - It has been estimated that 3 trillion standard...Ch. 6 - Prob. 6.153QPCh. 6 - Prob. 6.154QPCh. 6 - Prob. 6.155QPCh. 6 - We hear a lot about how the burning of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
For each of the following 2-dimensional shapes, determine the highest order rotation axis of symmetry.
Inorganic Chemistry
4.1 Write the symbols for the following elements.
a. copper
b. platinum
c. calcium
d. manganese
e. Iron
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
How could you separate a mixture of the following compounds? The reagents available to you are water, either, 1...
Organic Chemistry
Q2. Which statement best defines chemistry?
a. The science that studies solvents, drugs, and insecticides
b. Th...
Introductory Chemistry (5th Edition) (Standalone Book)
The method to determine the volume of a powered solid, liquid and a rock needs to be determined. Concept introd...
Living by Chemistry
Draw a Lewis structure for each of the following species: a. H2CO3 b. CO32 c. CH2O d. CO2
Essential Organic Chemistry (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A 1.00 mol sample of H2 is carefully warmed from 22 K to 40 K at constant volume. a What is the expected heat capacity of the hydrogen? b What is q for the process?arrow_forwardIf nitric acid were sufficiently heated, it can be decomposed into dinitrogen pentoxide and water vapor: 2HNO3(l)N2O5(g)+H2O(g)Hrxn=+176kJ (a) Calculate the enthalpy change that accompanies the reaction of 1.00 kg HNO3 (). (b) Is heat absorbed or released during the course of the reaction?arrow_forwardWhat is the change in internal energy when a gas contracts from 377mL to 119mLundera pressure of 1550 torr, whileat the same time being cooled by removing 124.0J ofheat energy?arrow_forward
- An industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forwardConsider a mixture of air and gasoline vapor in a cylinder with a piston. The original volume is 40. cm3. If the combustion of this mixture releases 950. J of energy, to what volume will the gases expand against a constant pressure of 650. torr if all the energy of combustion is converted into work to push back the piston?arrow_forwardIn the reaction of two moles of gaseous hydrogen and one mole of gaseous oxygen to form two moles of gaseous water vapor, two moles of products are formed from three moles of reactants. If this reaction is done at 1.01 104 Pa (and at 0 C), the volume is reduced by 22.4 L. (a) In this reaction, how much work is done on the system (H2, O2, H2O) by the surroundings? (b) The enthalpy change for this reaction is 483.6 kJ. Use this value, along with the answer to (a), to calculate rU, the change in internal energy in the system.arrow_forward
- Which of the following quantities can be taken to be independent of temperature? independent of pressure? (a) H for a reaction (b) S for a reaction (c) G for a reaction (d) S for a substancearrow_forwardCalcium carbide, CaC2, is manufactured by reducing lime with carbon at high temperature. (The carbide is used in turn to make acetylene, an industrially important organic chemical.) Is the reaction endothermic or exothermic?arrow_forwardNitrogen gas is confined in a cylinder with a movable piston under a constant pressure of 9.95 104 Pa. When 695 J of energy in the form of heat is transferred from the gas to the surroundings, its volume decreases by 1.88 L. What is the change in internal energy of the gas?arrow_forward
- 9.102 A runner generates 418 kJ of energy per kilometer from the cellular oxidation of food. The runner's body must dissipate this heat or the body will overheat. Suppose that sweat evaporation is the only important cooling mechanism. If you estimate the enthalpy of evaporation of water as 44 kJ/mol and assume that sweat can he treated as water, describe how you would estimate the volume of sweat that would have to be evaporated if the runner runs a 10-km race.arrow_forwardAssume that 1.20 g of benzoicacid, C6H5COOH, is burned in a porcelain dish exposed to the air.If 31, 723 J of energy is givenoff andthe surrounding temperature is 24.6C, calculate q, w, H,and U. Compare your answers to those from the previousproblem.arrow_forwardOn complete combustion at constant pressure, a 1.00-L sample of a gaseous mixture at 0C and 1.00 atm (STP) evolves 75.65 kJ of heat. If the gas is a mixture of ethane (C2H6) and propane (C3H8), what is the mole fraction of ethane in the mixture?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY