Contemporary Abstract Algebra
9th Edition
ISBN: 9781305657960
Author: Joseph Gallian
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 60E
To determine
To write:
Write
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Question 3
over a field K.
In this question, MË(K) denotes the set of n × n matrices
(a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is
equivalent to A-¹? Justify your answer.
(b) Let B be given by
8
B = 0 7 7
0 -7 7
Working over the field F2 with 2 elements, compute the rank of B as an element
of M2(F2).
(c) Let
1
C
-1 1
[4]
[6]
and consider C as an element of M3(Q). Determine the minimal polynomial
mc(x) and hence, or otherwise, show that C can not be diagonalised.
[7]
(d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write
down all the eigenvalues. Show your working.
[8]
Chapter 6 Solutions
Contemporary Abstract Algebra
Ch. 6 - Prob. 1ECh. 6 - Find Aut(Z).Ch. 6 - Let R+ be the group of positive real numbers under...Ch. 6 - Show that U(8) is not isomorphic to U(10).Ch. 6 - Show that U(8) is isomorphic to U(12).Ch. 6 - Prove that isomorphism is an equivalence relation....Ch. 6 - Prove that S4 is not isomorphic to D12 .Ch. 6 - Show that the mapping alog10a is an isomorphism...Ch. 6 - In the notation of Theorem 6.1, prove that Te is...Ch. 6 - Given that is a isomorphism from a group G under...
Ch. 6 - Let G be a group under multiplication, G be a...Ch. 6 - Let G be a group. Prove that the mapping (g)=g1...Ch. 6 - Prob. 13ECh. 6 - Find two groups G and H such that GH , but...Ch. 6 - Prob. 15ECh. 6 - Find Aut(Z6) .Ch. 6 - If G is a group, prove that Aut(G) and Inn(G) are...Ch. 6 - If a group G is isomorphic to H, prove that Aut(G)...Ch. 6 - Suppose belongs to Aut(Zn) and a is relatively...Ch. 6 - Let H be the subgroup of all rotations in Dn and...Ch. 6 - Let H=S5(1)=1andK=S5(2)=2 . Provethat H is...Ch. 6 - Show that Z has infinitely many subgroups...Ch. 6 - Prob. 23ECh. 6 - Let be an automorphism of a group G. Prove that...Ch. 6 - Prob. 25ECh. 6 - Suppose that :Z20Z20 is an automorphismand (5)=5 ....Ch. 6 - Identify a group G that has subgroups isomorphic...Ch. 6 - Prove that the mapping from U(16) to itself given...Ch. 6 - Let rU(n) . Prove that the mapping a: ZnZn defined...Ch. 6 - The group {[1a01]|aZ} is isomorphic to what...Ch. 6 - If and are isomorphisms from the cyclic group a...Ch. 6 - Prob. 32ECh. 6 - Prove property 1 of Theorem 6.3. Theorem 6.3...Ch. 6 - Prove property 4 of Theorem 6.3. Theorem 6.3...Ch. 6 - Referring to Theorem 6.1, prove that Tg is indeed...Ch. 6 - Prove or disprove that U(20) and U(24) are...Ch. 6 - Show that the mapping (a+bi)=a=bi is an...Ch. 6 - Let G={a+b2a,barerational} and...Ch. 6 - Prob. 39ECh. 6 - Explain why S8 contains subgroups isomorphic to...Ch. 6 - Let C be the complex numbers and M={[abba]|a,bR} ....Ch. 6 - Prob. 42ECh. 6 - Prob. 43ECh. 6 - Suppose that G is a finite Abelian group and G has...Ch. 6 - Prob. 45ECh. 6 - Prob. 46ECh. 6 - Suppose that g and h induce the same inner...Ch. 6 - Prob. 48ECh. 6 - Prob. 49ECh. 6 - Prob. 50ECh. 6 - Prob. 51ECh. 6 - Let G be a group. Complete the following...Ch. 6 - Suppose that G is an Abelian group and is an...Ch. 6 - Let be an automorphismof D8 . What are the...Ch. 6 - Let be an automorphism of C*, the group of...Ch. 6 - Let G=0,2,4,6,...andH=0,3,6,9,... .Prove that G...Ch. 6 - Give three examples of groups of order 120, no two...Ch. 6 - Let be an automorphism of D4 such that (H)=D ....Ch. 6 - Prob. 59ECh. 6 - Prob. 60ECh. 6 - Write the permutation corresponding to R90 in the...Ch. 6 - Show that every automorphism of the rational...Ch. 6 - Prove that Q+ , the group of positive rational...Ch. 6 - Prob. 64ECh. 6 - Prob. 65ECh. 6 - Prove that Q*, the group of nonzero rational...Ch. 6 - Give a group theoretic proof that Q under addition...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
- 2. What is the total length of the shortest path that goes from (0,4) to a point on the x-axis, then to a point on the line y = 6, then to (18.4)?arrow_forwardموضوع الدرس Prove that Determine the following groups Homz(QZ) Hom = (Q13,Z) Homz(Q), Hom/z/nZ, Qt for neN- (2) Every factor group of adivisible group is divisble. • If R is a Skew ficald (aring with identity and each non Zero element is invertible then every R-module is free.arrow_forwardI have ai answers but incorrectarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License