Brake or turn ? Figure 6- 44 depicts an overhead view of a car’s path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is d = 107 m, and take the car’s mass as m = 1400 kg, its initial speed as v 0 = 35 m/s, and the coefficient of static friction as µ s = 0.50. Assume that the car’s weight is distributed evenly on the four wheels, even during braking. (a) What magnitude of static friction is needed (between tires and road) to stop the car just as it reaches the wall? (b) What is the maximum possible static friction ƒ s , max ? (c) If the coefficient of kinetic friction between the (sliding) tires and the road is µ k = 0.40, at what speed will the car hit the wall? To avoid the crash, a driver could elect to turn the car so that it just barely misses the wall, as shown in the figure. (d) What magnitude of frictional force would be required to keep the car in a circular path of radius d and at the given speed v 0 , so that the car moves in a quarter circle and then parallel to the wall? (e) Is the required force less than ƒ s , max so that a circular path is possible? Figure 6-44 Problem 58.
Brake or turn ? Figure 6- 44 depicts an overhead view of a car’s path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is d = 107 m, and take the car’s mass as m = 1400 kg, its initial speed as v 0 = 35 m/s, and the coefficient of static friction as µ s = 0.50. Assume that the car’s weight is distributed evenly on the four wheels, even during braking. (a) What magnitude of static friction is needed (between tires and road) to stop the car just as it reaches the wall? (b) What is the maximum possible static friction ƒ s , max ? (c) If the coefficient of kinetic friction between the (sliding) tires and the road is µ k = 0.40, at what speed will the car hit the wall? To avoid the crash, a driver could elect to turn the car so that it just barely misses the wall, as shown in the figure. (d) What magnitude of frictional force would be required to keep the car in a circular path of radius d and at the given speed v 0 , so that the car moves in a quarter circle and then parallel to the wall? (e) Is the required force less than ƒ s , max so that a circular path is possible? Figure 6-44 Problem 58.
Brake or turn? Figure 6- 44 depicts an overhead view of a car’s path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is d = 107 m, and take the car’s mass as m = 1400 kg, its initial speed as v0 = 35 m/s, and the coefficient of static friction as µs = 0.50. Assume that the car’s weight is distributed evenly on the four wheels, even during braking. (a) What magnitude of static friction is needed (between tires and road) to stop the car just as it reaches the wall? (b) What is the maximum possible static friction ƒs, max? (c) If the coefficient of kinetic friction between the (sliding) tires and the road is µk = 0.40, at what speed will the car hit the wall? To avoid the crash, a driver could elect to turn the car so that it just barely misses the wall, as shown in the figure. (d) What magnitude of frictional force would be required to keep the car in a circular path of radius d and at the given speed v0, so that the car moves in a quarter circle and then parallel to the wall? (e) Is the required force less than ƒs, max so that a circular path is possible?
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.