EBK CALCULUS
10th Edition
ISBN: 9780100453777
Author: Larson
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 54RE
To determine
To calculate: General solution of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and
x-6+
lim f(x)=-3, find the following limits.
X-6
a.
lim f(x)
b.
+9-←x
lim f(x)
X-6
a.
lim f(x)=
+9-←x
(Simplify your answer.)
b.
lim f(x)=
X→-6
(Simplify your answer.)
...
Evaluate the following limit.
lim
X-X
(10+19)
Select the correct answer below and, if necessary, fill in the answer box within your choice.
10
A.
lim 10+
=
2
☐ (Type an integer or a simplified fraction.)
X-∞
B. The limit does not exist.
Find the following limit or state that it does not exist.
x² +x-20
lim
x-4
x-4
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. lim
x²+x-20
x-4
(Type an exact answer.)
x→4
B. The limit does not exist.
Chapter 6 Solutions
EBK CALCULUS
Ch. 6.1 - Verifying a Solution In Exercises 18, verify the...Ch. 6.1 - Verifying a Solution In Exercises 510, verify that...Ch. 6.1 - Verifying a Solution In Exercises 18, verify the...Ch. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Verifying a Solution In Exercises 510, verify that...Ch. 6.1 - Prob. 8ECh. 6.1 - Prob. 9ECh. 6.1 - Prob. 10E
Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 13ECh. 6.1 - Determining a Solution In Exercises 1522,...Ch. 6.1 - Prob. 17ECh. 6.1 - Determining a Solution In Exercises 1522,...Ch. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Determining a Solution: In Exercises 23-30,...Ch. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Finding a Particular Solution In Exercises 29–32,...Ch. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Finding a Particular Solution In Exercises 3540,...Ch. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - Finding a General Solution In Exercises 4152, use...Ch. 6.1 - Prob. 43ECh. 6.1 - Prob. 44ECh. 6.1 - Prob. 45ECh. 6.1 - Prob. 46ECh. 6.1 - Prob. 47ECh. 6.1 - Prob. 48ECh. 6.1 - Prob. 49ECh. 6.1 - Prob. 50ECh. 6.1 - Prob. 51ECh. 6.1 - Prob. 52ECh. 6.1 - Prob. 53ECh. 6.1 - Prob. 54ECh. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.1 - Prob. 59ECh. 6.1 - Matching In Exercises 5760, match the differential...Ch. 6.1 - Prob. 61ECh. 6.1 - Slope Field In Exercises 6164, (a) sketch the...Ch. 6.1 - Slope Field In Exercises 6164, (a) sketch the...Ch. 6.1 - Prob. 64ECh. 6.1 - Prob. 65ECh. 6.1 - Slope Field Use the slope field for the...Ch. 6.1 - Slope Field In Exercises 6772, use a computer...Ch. 6.1 - Prob. 68ECh. 6.1 - Prob. 69ECh. 6.1 - Prob. 70ECh. 6.1 - Prob. 71ECh. 6.1 - Prob. 72ECh. 6.1 - Euler's Method In Exercises 73-78, use Eulers...Ch. 6.1 - Prob. 74ECh. 6.1 - Prob. 75ECh. 6.1 - Euler's Method In Exercises 73-78, use Eulers...Ch. 6.1 - Prob. 77ECh. 6.1 - Prob. 78ECh. 6.1 - Prob. 79ECh. 6.1 - Euler's Method In Exercises 79-81, complete the...Ch. 6.1 - Euler's Method In Exercises 79-81, complete the...Ch. 6.1 - Prob. 82ECh. 6.1 - Prob. 83ECh. 6.1 - Prob. 84ECh. 6.1 - Prob. 85ECh. 6.1 - Slope Field Explain how to interpret a slope...Ch. 6.1 - Prob. 87ECh. 6.1 - EXPLORING CONCEPTS Finding Values II is known that...Ch. 6.1 - Prob. 89ECh. 6.1 - Prob. 90ECh. 6.1 - Prob. 91ECh. 6.1 - Prob. 92ECh. 6.1 - Prob. 93ECh. 6.1 - Prob. 94ECh. 6.1 - Electric Circuit The diagram shows a simple...Ch. 6.1 - Prob. 96ECh. 6.1 - Prob. 97ECh. 6.1 - PUTNAM EXAM CHALLENGE Let f be a...Ch. 6.1 - Prob. 99ECh. 6.2 - CONCEPT CHECK Describing Values Describe what the...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Solving a Differential Equation In Exercises 3-12,...Ch. 6.2 - Writing and Solving a Differential Equation In...Ch. 6.2 - Writing and Solving a Differential Equation In...Ch. 6.2 - Slope Field In Exercises 15 and 16, a differential...Ch. 6.2 - Slope Field In Exercises 15 and 16, a differential...Ch. 6.2 - Finding a Particular Solution In Exercises 17-20,...Ch. 6.2 - Finding a Particular Solution In Exercises 17-20,...Ch. 6.2 - Finding a Particular Solution In Exercises 17-20,...Ch. 6.2 - Finding a Particular Solution In Exercises 17-20,...Ch. 6.2 - Writing and Solving a Differential Equation In...Ch. 6.2 - Writing and Solving a Differential Equation In...Ch. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Radioactive Decay In Exercises 29-36, complete the...Ch. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Radioactive Decay Radioactive radium has a...Ch. 6.2 - Carbon Dating Carbon-14 dating assumes that the...Ch. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Population In Exercises 5154, the population (in...Ch. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Bacteria Growth The number of bacteria in a...Ch. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 59ECh. 6.2 - Prob. 60ECh. 6.2 - Prob. 61ECh. 6.2 - Forestry The value of a tract of timber is...Ch. 6.2 - Prob. 63ECh. 6.2 - Noise Level With the installation of noise...Ch. 6.2 - Newton's Law of Cooling When an object is removed...Ch. 6.2 - Newton's Law of Cooling A container of hot liquid...Ch. 6.2 - Prob. 67ECh. 6.2 - Prob. 68ECh. 6.2 - True or False? In Exercises 67 and 68, determine...Ch. 6.2 - Prob. 70ECh. 6.3 - Prob. 62ECh. 6.3 - Prob. 1ECh. 6.3 - Finding a General Solution Using Separation of...Ch. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Finding a General Solution Using Separation of...Ch. 6.3 - Finding a Particular Solution Using Separation of...Ch. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Finding a Particular Solution Using Separation of...Ch. 6.3 - Finding a Particular Solution Curve In Exercises...Ch. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Using Slope In Exercises 33 and 34, find all...Ch. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Chemical Reaction In a chemical reaction a certain...Ch. 6.3 - Weight Gain A calf that weighs 60 pounds at birth...Ch. 6.3 - Weight Gain A calf that weighs w0 pounds at birth...Ch. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Matching In Exercises 49-52, match the logistic...Ch. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Using a Logistic Equation In Exercises 53 and 54,...Ch. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.3 - Using a Logistic Differential Equation In...Ch. 6.3 - Solving a Logistic Differential Equation In...Ch. 6.3 - Prob. 56ECh. 6.3 - Prob. 57ECh. 6.3 - Prob. 58ECh. 6.3 - Endangered Species A conservation organization...Ch. 6.3 - Bacteria Growth At time t=0. a bacterial culture...Ch. 6.3 - Prob. 61ECh. 6.3 - Prob. 63ECh. 6.3 - Prob. 64ECh. 6.3 - Sailing Ignoring resistance, a sailboat starting...Ch. 6.3 - Prob. 66ECh. 6.3 - Determining if a Function Is Homogeneous In...Ch. 6.3 - Prob. 68ECh. 6.3 - Prob. 69ECh. 6.3 - Prob. 70ECh. 6.3 - Prob. 71ECh. 6.3 - Prob. 72ECh. 6.3 - Prob. 73ECh. 6.3 - Prob. 74ECh. 6.3 - Prob. 75ECh. 6.3 - Prob. 76ECh. 6.3 - Prob. 77ECh. 6.3 - Solving a Homogeneous Differential Equation In...Ch. 6.3 - Prob. 79ECh. 6.3 - Prob. 80ECh. 6.3 - Prob. 81ECh. 6.3 - Prob. 82ECh. 6.3 - Prob. 83ECh. 6.3 - Prob. 84ECh. 6.4 - Prob. 41ECh. 6.4 - Determining Whether a Differential Equation Is...Ch. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Finding a Particular Solution In Exercises 17-24,...Ch. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Finding a Particular Solution In Exercises 17-24,...Ch. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Investment Growth In Exercises 27 and 28, use the...Ch. 6.4 - Learning Curve The management at a certain factory...Ch. 6.4 - Intravenous Feeding Glucose is added intravenously...Ch. 6.4 - Falling Object In Exercises 31 and 32, consider an...Ch. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prob. 36ECh. 6.4 - Prob. 37ECh. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 42ECh. 6.4 - Prob. 43ECh. 6.4 - Prob. 44ECh. 6.4 - Prob. 45ECh. 6.4 - Prob. 46ECh. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.4 - Prob. 51ECh. 6.4 - Prob. 52ECh. 6.4 - Prob. 53ECh. 6.4 - Prob. 54ECh. 6.4 - Prob. 55ECh. 6.4 - Solving a First-Order Differential Equation In...Ch. 6.4 - Prob. 57ECh. 6.4 - Prob. 58ECh. 6.4 - Prob. 59ECh. 6.4 - Solving a Bernoulli Differential Equation In...Ch. 6.4 - Prob. 61ECh. 6.4 - Prob. 62ECh. 6.4 - Prob. 63ECh. 6.4 - Prob. 64ECh. 6.4 - Prob. 65ECh. 6.4 - Prob. 66ECh. 6.4 - Prob. 67ECh. 6.4 - True or False? In Exercises 65 and 66, determine...Ch. 6 - Determining a Solution Determine whether the...Ch. 6 - Prob. 2RECh. 6 - Prob. 3RECh. 6 - Prob. 4RECh. 6 - Prob. 5RECh. 6 - Prob. 6RECh. 6 - Prob. 7RECh. 6 - Finding a General Solution In Exercises 38, use...Ch. 6 - Prob. 9RECh. 6 - Prob. 10RECh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Prob. 15RECh. 6 - Prob. 16RECh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 20RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Prob. 24RECh. 6 - Prob. 25RECh. 6 - Prob. 26RECh. 6 - Air Pressure Under ideal conditions, air pressure...Ch. 6 - Prob. 28RECh. 6 - Population A population grows exponentially at a...Ch. 6 - Prob. 30RECh. 6 - Sales The sales S (in thousands of units) of a new...Ch. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Finding a General Solution Using Separation of...Ch. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Finding a Particular Solution Using Separation of...Ch. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Slope Field In Exercises 41 and 42, sketch a few...Ch. 6 - Prob. 42RECh. 6 - Prob. 43RECh. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Environment A conservation department releases...Ch. 6 - Environment Write a logistic differential equation...Ch. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 1PSCh. 6 - Sales Let S represent sales of a new product (in...Ch. 6 - Prob. 3PSCh. 6 - Prob. 4PSCh. 6 - Torricelli's Law Torricellis Law states that water...Ch. 6 - Torricelli's Law The cylindrical water tank shown...Ch. 6 - Torricelli's Law A tank similar to the one in...Ch. 6 - Prob. 8PSCh. 6 - Prob. 9PSCh. 6 - Prob. 10PSCh. 6 - Prob. 11PSCh. 6 - In Exercises 11 and 12, it was assumed that there...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Determine the intervals on which the following function is continuous. f(x) = x - 5x + 6 2 X-9 On what interval(s) is f continuous? (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.)arrow_forwardFind the following limit or state that it does not exist. 2 3x² +7x+2 lim X-2 6x-8 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. lim 3x²+7x+2 6x-8 (Simplify your answer.) X-2 B. The limit does not exist.arrow_forwardFind the following limit or state that it does not exist. X-2 lim x-2 5x+6 - 4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. lim X-2 X-2 15x+6 = (Type an exact answer.) - 4 B. The limit does not exist.arrow_forward
- (a) Sketch the graph of a function that is not continuous at 1, but is defined at 1. (b) Sketch the graph of a function that is not continuous at 1, but has a limit at 1. (a) Which of the following graphs shows a function that is not continuous at 1, but is defined at 1. ○ A. Ay ✓ B. 5 X ✓ (b) Which of the following graphs shows a function that is not continuous at 1, but has a limit at 1. ○ A. B. X y 5- -5 5 ✓ ✓ 5 ☑ 5 X y ☑ LVarrow_forwardIf lim f(x)=L and lim f(x) = M, where L and M are finite real numbers, then what must be true about L x-a x-a+ and M in order for lim f(x) to exist? x-a Choose the correct answer below. A. L = M B. LMarrow_forwardDetermine the following limit, using ∞ or - ∞ when appropriate, or state that it does not exist. lim csc 0 Select the correct choice below, and fill in the answer box if necessary. lim csc 0 = ○ A. 0→⭑ B. The limit does not exist and is neither ∞ nor - ∞.arrow_forward
- Is the function f(x) continuous at x = 1? (x) 7 6 5 4 3 2 1 0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 -71 Select the correct answer below: The function f(x) is continuous at x = 1. The right limit does not equal the left limit. Therefore, the function is not continuous. The function f(x) is discontinuous at x = 1. We cannot tell if the function is continuous or discontinuous.arrow_forwardQuestion Is the function f(x) shown in the graph below continuous at x = -5? f(z) 7 6 5 4 2 1 0 -10 -6 -5 -4 1 0 2 3 5 7 10 -1 -2 -3 -4 -5 Select the correct answer below: The function f(x) is continuous. The right limit exists. Therefore, the function is continuous. The left limit exists. Therefore, the function is continuous. The function f(x) is discontinuous. We cannot tell if the function is continuous or discontinuous.arrow_forwardThe graph of f(x) is given below. Select all of the true statements about the continuity of f(x) at x = -1. 654 -2- -7-6-5-4- 2-1 1 2 5 6 7 02. Select all that apply: ☐ f(x) is not continuous at x = -1 because f(-1) is not defined. ☐ f(x) is not continuous at x = −1 because lim f(x) does not exist. x-1 ☐ f(x) is not continuous at x = −1 because lim ƒ(x) ‡ ƒ(−1). ☐ f(x) is continuous at x = -1 J-←台arrow_forward
- Let h(x, y, z) = — In (x) — z y7-4z - y4 + 3x²z — e²xy ln(z) + 10y²z. (a) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to x, 2 h(x, y, z). მ (b) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to y, 2 h(x, y, z).arrow_forwardints) A common representation of data uses matrices and vectors, so it is helpful to familiarize ourselves with linear algebra notation, as well as some simple operations. Define a vector ♬ to be a column vector. Then, the following properties hold: • cu with c some constant, is equal to a new vector where every element in cv is equal to the corresponding element in & multiplied by c. For example, 2 2 = ● √₁ + √2 is equal to a new vector with elements equal to the elementwise addition of ₁ and 2. For example, 問 2+4-6 = The above properties form our definition for a linear combination of vectors. √3 is a linear combination of √₁ and √2 if √3 = a√₁ + b√2, where a and b are some constants. Oftentimes, we stack column vectors to form a matrix. Define the column rank of a matrix A to be equal to the maximal number of linearly independent columns in A. A set of columns is linearly independent if no column can be written as a linear combination of any other column(s) within the set. If all…arrow_forwardThe graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 3. Select all that apply: 7 -6- 5 4 3 2 1- -7-6-5-4-3-2-1 1 2 3 4 5 6 7 +1 -2· 3. -4 -6- f(x) is not continuous at a = 3 because it is not defined at x = 3. ☐ f(x) is not continuous at a = - 3 because lim f(x) does not exist. 2-3 f(x) is not continuous at x = 3 because lim f(x) ‡ ƒ(3). →3 O f(x) is continuous at a = 3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY