
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 50RQ
To determine
The feature responsible for the observed corrosion resistance of stainless steel.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
for this 4 figuredarw the Kinematic Diagram:DoF:F=Type/Name ofmechanismEvolution:
Two channels and two plates are used to formthe column section shown. For b = 200 mm,determine the moments of inertia and theradii of gyration of the combined section withrespect to the centroidal x and y axes.For the section of problem, determine thefirst moment of the upper plate about thecentroidal x-axis
Determine by direct integration the moment of inertia of theshaded area at right with respect to the x axis shown.
Determine by direct integration the moment of inertia of theshaded area of the figure with respect to the y axis shown.
Chapter 6 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 6 - Why might it be important to know the prior...Ch. 6 - What is a ferrous material?Ch. 6 - How does the amount of steel that is recycled...Ch. 6 - Why is the recycling of steel so attractive...Ch. 6 - When iron ore is reduced to metallic iron, what...Ch. 6 - What properties or characteristics have made steel...Ch. 6 - What is involved in the conversion of pig iron...Ch. 6 - What are some of the modification processes that...Ch. 6 - What is the advantage of pouring molten metal from...Ch. 6 - What are some of the attractive economic and...
Ch. 6 - Prob. 11RQCh. 6 - What are some of the techniques used to reduce the...Ch. 6 - How might other gases, such as nitrogen and...Ch. 6 - What are some of the attractive features of...Ch. 6 - What is plain�carbon steel?Ch. 6 - What is considered a low�carbon steel?...Ch. 6 - What properties account for the high�volume use...Ch. 6 - Why should plain�carbon steels be given first...Ch. 6 - What are some of the common alloy elements added...Ch. 6 - For what different reasons might alloying elements...Ch. 6 - What are some of the alloy elements that tend to...Ch. 6 - While strength and hardness are dependent on the...Ch. 6 - What alloys are particularly effective in...Ch. 6 - What is the basis of the AISI–SAE classification...Ch. 6 - What is the significance of the last two digits in...Ch. 6 - How are letters incorporated into the AISI–SAE...Ch. 6 - What is an H�grade steel, and when should it be...Ch. 6 - Why should the proposed fabrication processes...Ch. 6 - How are the final properties usually obtained in...Ch. 6 - Prob. 30RQCh. 6 - Prob. 31RQCh. 6 - Prob. 32RQCh. 6 - What is the primary attraction of the...Ch. 6 - Prob. 34RQCh. 6 - What are the two phases that are present in...Ch. 6 - What is the transformation that occurs during the...Ch. 6 - Prob. 37RQCh. 6 - Prob. 38RQCh. 6 - Prob. 39RQCh. 6 - Describe the role of steel in the automotive...Ch. 6 - Prob. 41RQCh. 6 - Prob. 42RQCh. 6 - What are some of the compromises associated with...Ch. 6 - What factors might be used to justify the added...Ch. 6 - What are some of the coating materials that have...Ch. 6 - What are soft magnetic materials?Ch. 6 - Prob. 47RQCh. 6 - What are maraging steels, and for what conditions...Ch. 6 - Prob. 49RQCh. 6 - Prob. 50RQCh. 6 - Prob. 51RQCh. 6 - Why should ferritic stainless steels be given...Ch. 6 - Which of the major types of stainless steel is...Ch. 6 - Under what conditions might a martensitic...Ch. 6 - Prob. 55RQCh. 6 - How can an austenitic stainless steel be easily...Ch. 6 - Prob. 57RQCh. 6 - Prob. 58RQCh. 6 - Prob. 59RQCh. 6 - Prob. 60RQCh. 6 - What is a tool steel?Ch. 6 - How does the AISI–SAE designation system for...Ch. 6 - What is the least expensive variety of tool steel?Ch. 6 - Prob. 64RQCh. 6 - What alloying elements are used to produce the...Ch. 6 - What assets can be provided by the...Ch. 6 - Prob. 67RQCh. 6 - Prob. 68RQCh. 6 - Describe the microstructure of gray cast iron.Ch. 6 - Which of the structural units is generally altered...Ch. 6 - What are some of the attractive engineering...Ch. 6 - What are some of the key limitations to the...Ch. 6 - Prob. 73RQCh. 6 - How is malleable cast iron produced?Ch. 6 - What structural feature is responsible for the...Ch. 6 - Prob. 76RQCh. 6 - What is the purpose of inoculation when making...Ch. 6 - What is fading? Why should ductile iron be...Ch. 6 - What requirements of ductile iron manufacture are...Ch. 6 - What are some of the attractive features of...Ch. 6 - Compacted graphite iron has a structure and...Ch. 6 - What are some of the reasons that alloy additions...Ch. 6 - What properties are enhanced in the high�alloy...Ch. 6 - When should cast steel be used instead of a cast...Ch. 6 - In what ways might a cast steel be more difficult...Ch. 6 - Why are standard geometry test bars often cast...Ch. 6 - Prob. 1PCh. 6 - Select from among the common hand tools in the...Ch. 6 - Prob. 3PCh. 6 - Identify a particular product that has been...Ch. 6 - Prob. 5PCh. 6 - Select among the components in the following list,...Ch. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Surface Treatment—Depending on the material...
Knowledge Booster
Similar questions
- For the following MATLAB code, I need to answer a few questions. Can you identify the curves as elliptic functions? Which curves reflect the sn, cn, and dn functions?From the curves, determine the maximum amplitudes and the period corresponding toeach angular velocity component. clc; clear all; I = [500; 125; 425]; w = [0.2; 0.1; 0.2]; rev = 0:0.01:10; C = eye(3); % Using ode45 to integrate the KDE and DDE options = odeset('RelTol',1e-9,'AbsTol',1e-9); result = ode45(@K_DDE, rev, [w; I; C(:)], options); v = result.x; % Extracting information from the ode45 solver w = result.y(1:3, :); C_ode = reshape(result.y(7:end, :), [3,3,length(v)]); plot(v, w) xlabel('rev') ylabel('w (rad/s)') legend('w1', 'w2', 'w3') % Functions function dwCdt = K_DDE(~, w_IC) % Extracting the initial condtions to a variable w = w_IC(1:3); I = w_IC(4:6); C = reshape(w_IC(7:end), [3, 3]); I1 = I(1); I2 = I(2); I3 = I(3); K1 = -(I3-I2)/I1; K2 = -(I1-I3)/I2; K3 = -(I2-I1)/I3; %…arrow_forwardplease show a drawing/image and explain how to properly do the question. thanksarrow_forwardFor the four-bar- linkage shown in the following figure. BC=68mm, CD=100mm, AD=120mm. Determine the range of AB to make it a crank-rocker mechanism. B Darrow_forward
- all of those 4 fi 1)Draw kinematic diagram: 2)DOF: 3)type/name of mechanism 4)evolution:arrow_forward7.4 Impeller viscometer The rheology of a Penicillium chrysogenum broth is examined using an impeller viscometer. The density of the cell suspension is approximately 1000 kg m³. Samples of broth are stirred under laminar conditions using a Rushton turbine of diameter 4 cm in a glass beaker of diameter 15 cm. The average shear rate generated by the impeller is greater than the stirrer speed by a factor of about 10.2. When the stirrer shaft is attached to a device for measuring torque and rotational speed, the following results are recorded. Stirrer speed (s¹) Torque (Nm) 0.185 3.57 × 10-6 0.163 3.45 × 10-6 0.126 3.31 x 10-6 0.111 3.20×10-6 Can the rheology be described using a power-law model? If so, evaluate K and n.arrow_forward(read image)arrow_forward
- (read image) Answer Providedarrow_forwardThis is part B Part A's question and answer was find moment of inertia (Ix = 3.90×10^5) and radius of gyration (kx = 21.861) Determine the centroid ( x & y ) of the I-section, Calculate the moment of inertia of the section about itscentroidal x & y axes. How or why is this result different fromthe result of a previous problem?arrow_forwardDetermine by direct integration the moment of inertia of theshaded area of figure with respect to the y axis shownarrow_forward
- Consider the feedback controlled blending system shown below, which is designed to keep theoutlet concentration constant despite potential variations in the stream 1 composition. The density of all streamsis 920 kg/m3. At the nominal steady state, the flow rates of streams 1 and 2 are 950 and 425 kg/min,respectively, the liquid level in the tank is 1.3 m, the incoming mass fractions are x1 = 0.27, x2 = 0.54. Noticethe overflow line, indicating that the liquid level remains constant (i.e. any change in total inlet flow ratetranslates immediately to the same change in the outlet flow rate). You may assume the stream 1 flowrate andthe stream 2 composition are both constant. Use minutes as the time unit throughout this problem. Identify any controlled variable(s) (CVs), manipulated variable(s) (MVs),and disturbance variable(s) (DVs) in this problem. For each, explain how you know that’show it is classified.CVs: ___________, MVs: _____________, DVs: ______________ b) Draw a block diagram…arrow_forwardA heat transfer experiment is conducted on two identical spheres which are initially at the same temperature. The spheres are cooled by placing them in a channel. The fluid velocity in the channel is non-uniform, having a profile as shown. Which sphere cools off more rapidly? Explain. V 1arrow_forwardMy ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces {fx= , fy= mz= and for the last find the moment of inertial about the show x and y axes please show how to solve step by steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning