Concept explainers
You have a great job working at a major league baseball stadium for the summer! At this stadium, the speed of every pitch is measured using a radar gun aimed at the pitcher by an operator behind home plate. The operator has so much experience with this job that he has perfected a technique by which he can make each measurement at the exact instant at which the ball leaves the pitcher’s hand. Your supervisor asks you to construct an algorithm that will provide the speed of the ball as it crosses home plate, 18.3 m from the pitcher, based on the measured speed vi of the ball as it leaves the pitcher’s hand. The speed at home plate will be lower due to the resistive force of the air on the baseball. The vertical motion of the ball is small, so, to a good approximation, we can consider only the horizontal motion of the ball. You begin to develop your algorithm by applying the particle under a net force to the baseball in the horizontal direction. A pitch is measured to have a speed of 40.2 m/s as it leaves the pitcher’s hand. You need to tell your supervisor how fast it was traveling as it crossed home plate. (Hint: Use the chain rule to express acceleration in terms of a derivative with respect to x, and then solve a differential equation for v to find an expression for the speed of the baseball as a function of its position. The function will involve an exponential. Also make use of Table 6.1.)
Trending nowThis is a popular solution!
Chapter 6 Solutions
Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning