
Concept explainers
A producer of inkjet printer is planning to add a new line of printers, and you have been asked to balance the process, given the following task time and precedence relationship. Assume that cycle time is to be the minimum possible.
a. Do each of the following:
(1) Draw the precedence diagram.
(2) Assign tasks to stations in order of most following tasks. Tiebreaker, greatest positional weight.
(3) Determine the percentage of idle time.
(4) Compute the late of output in printers per day that could be expected for that line assuming a 420-minute working day.
b. Answer these questions:
(1) What it the shortest cycle tone that will permit use of only two workstations? Is this cycle time feasible? Identify the tasks you would assign to each station.
(2) Determine the percentage of idle time that would results if two stations were used.
(3) What is the daily output under this arrangement?
(4) Determine the output rate that would be associated with the maximum cycle time.
a) 1

To draw: The precedence diagram.
Answer to Problem 4P
Answer: Precedence diagram:
Explanation of Solution
Given information:
Task | Length (minutes) | Immediate (Predecessor) |
a | 0.2 | Nil |
b | 0.4 | a |
c | 0.3 | Nil |
d | 1.3 | b, c |
e | 0.1 | Nil |
f | 0.8 | e |
g | 0.3 | d, f |
h | 1.2 | g |
Precedence diagram:
The precedence diagram is drawn circles and arrows. The tasks are represented in circles and weights for each task are represented outside the circle. The arrows are represented to show which task is preceding the other task and so on.
2)

To assign: Tasks to workstations in the order of most following tasks.
Explanation of Solution
Given information:
Task | Length (minutes) | Immediate (Predecessor) |
a | 0.2 | Nil |
b | 0.4 | a |
c | 0.3 | Nil |
d | 1.3 | b, c |
e | 0.1 | Nil |
f | 0.8 | e |
g | 0.3 | d, f |
h | 1.2 | g |
The positional weight of a task is the sum of the task times of the task itself and all of the following tasks.
Task | Following tasks | Number of following tasks | Calculation of positional weight | Positional weight |
a | b, d, g, h | 4 | 0.2 + 0.4 + 1.3 + 0.3 + 1.2 | 3.4 |
b | d, g, h | 3 | 0.4 + 1.3 + 0.3 + 1.2 | 3.2 |
c | d, g, h | 3 | 0.3 + 1.3 + 0.3 + 1.2 | 3.1 |
d | g, h | 2 | 1.3 + 0.3 + 1.2 | 2.8 |
e | f, g, h | 3 | 0.1 + 0.8 + 0.3 + 1.2 | 2.4 |
f | g, h | 2 | 0.8 + 0.3 + 1.2 | 2.3 |
g | h | 1 | 0.3 + 1.2 | 1.5 |
h | Nil | 0 | 1.2 | 1.2 |
Calculation of cycle time:
The cycle is said to be the minimum time possible.
Therefore, the cycle time is 1.3 minutes / unit.
Assigning tasks to workstations:
Workstation number | Eligible task | Assigned task | Task time | Unassigned cycle time | Reason |
1.3 | |||||
1 | a, c, e | a | 0.2 | 1.1 | Task 'a' has more number of following tasks |
b, c , e | b | 0.4 | 0.7 | Task 'b' has greatest positional weight | |
c, e | c | 0.3 | 0.4 | Task 'c' has greatest positional weight | |
d, e | e | 0.1 | 0.3 | Task 'e' has greatest positional weight | |
d, f | None | 0.3 (Idle time) | The task time is greater than the unassigned cycle time. | ||
1.3 | |||||
2 | d, f | d | 1.3 | 0 | Task 'd' has greatest positional weight |
1.3 | |||||
3 | f | f | 0.8 | 0.5 | Task 'f' is the only eligible task available |
g | g | 0.3 | 0.2 | Task 'g' is the only eligible task available | |
h | None | 0.2 (Idle time) | The task time is greater than the unassigned cycle time. | ||
1.3 | |||||
4 | h | h | 1.2 | 0.1 | Task 'h' is the only task remaining |
0.1 (Idle time) | All tasks completed |
Overview of tasks assignment:
Workstation | Assigned tasks | Total cycle time used | Idle time |
1 | a, b, c, e | 1 | 0.3 |
2 | d | 1.3 | 0 |
3 | f, g | 1.1 | 0.2 |
4 | h | 1.2 | 0.1 |
3)

To determine: The percentage of idle time.
Answer to Problem 4P
Explanation of Solution
Formula to calculate percentage of idle time:
Calculation of percentage of idle time:
The percentage of idle time is 11.54%.
4)

To determine: The rate of output printers per day.
Answer to Problem 4P
Explanation of Solution
Given information:
Operating time per day = 420 minutes
Formula to calculate output printers per day:
Calculation of output printers per day:
The rate of output printers per day is 323.08 printers / day.
b) 1

To determine: The shortest cycle time that will permit the use of only 2 workstations and to check if it is feasible.
Explanation of Solution
Given information:
Task | Length (minutes) | Immediate (Predecessor) |
a | 0.2 | Nil |
b | 0.4 | a |
c | 0.3 | Nil |
d | 1.3 | b, c |
e | 0.1 | Nil |
f | 0.8 | e |
g | 0.3 | d, f |
h | 1.2 | g |
Calculation of shortest cycle time:
The shortest cycle time is calculated by summing all the task times and dividing the resultant value by 2 workstations.
The obtained shortest cycle time is feasible based on the task times. Every task time is either equal to or less than 2.3 minutes. The feasibility is checked by assigning the tasks to the 2 workstations.
Assigning tasks to workstations:
Workstation number | Eligible task | Assigned task | Task time | Unassigned cycle time | Reason |
2.3 | |||||
1 | a, c, e | a | 0.2 | 2.1 | Task 'a' has more number of following tasks |
b, c , e | b | 0.4 | 1.7 | Task 'b' has greatest positional weight | |
c, e | c | 0.3 | 1.4 | Task 'c' has greatest positional weight | |
d, e | e | 0.1 | 1.3 | Task 'e' has more number of following tasks | |
d, f | d | 1.3 | 0 | Task 'd' has greatest positional weight | |
2.3 | |||||
2 | f | f | 0.8 | 1.5 | Task 'f' is the only eligible task available |
g | g | 0.3 | 1.2 | Task 'g' is the only eligible task available | |
h | h | 1.2 | 1.2 | Task 'h' is the only task available |
Overview of tasks assignment:
Workstation | Assigned tasks | Total cycle time used | Idle time |
1 | a, b, c, e, d | 2.3 | 0 |
2 | f, g, h | 2.3 | 0 |
The shortest cycle time of 2.3 minutes is feasible.
2)

To determine: The percentage of idle time.
Answer to Problem 4P
Explanation of Solution
Formula to calculate percentage of idle time:
Calculation of percentage of idle time:
The percentage of idle time is 0.00%.
3)

To determine: The daily output under this arrangement.
Answer to Problem 4P
Explanation of Solution
Given information:
Operating time per day = 420 minutes
Formula to calculate output under this arrangement:
Calculation of output under this arrangement:
The rate of output under this arrangement is 182.61 units / day.
4)

To determine: The output rate associated with cycle time.
Answer to Problem 4P
Explanation of Solution
Given information:
Operating time per day = 420 minutes
Formula to calculate output under this arrangement:
Calculation of output under this arrangement:
The maximum cycle time is the sum of all task times.
The sum of all task times is:
The rate of output under this arrangement is 91.30 units / day.
Want to see more full solutions like this?
Chapter 6 Solutions
Loose Leaf for Operations Management (The Mcgraw-hill Series in Operations and Decision Sciences)
- Do you feel there is anything positive about rework?arrow_forwardDo you think technology can achieve faster setup times? How would it be implemented in the hospital workforce?arrow_forwardIn your experience or opinion, do you think process changes like organizing workspaces make a bigger difference, or is investing in technology usually the better solution for faster setups?arrow_forward
- Have you seen rework done in your business, and what was done to prevent that from occurring again?arrow_forwardResearch a company different than case studies examined and search the internet and find an example of a business that had to rework a process. How was the organization affected to rework a process in order to restore a good flow unit? Did rework hurt a process or improve the organization's operational efficiency? • Note: Include a reference with supportive citations in the discussion reply in your post.arrow_forwardSetup time is very important in affecting a process and the capacity of a process. How do you reduce setup time? Give examples of reducing setup time. Please Provide a referenecearrow_forward
- Do you think TPS was successful? If so, how? Are there other companies that have used TPS? If so, give examples. Please provide a referencearrow_forwardGiven the significant impact on finances, production timelines, and even equipment functionality, as you pointed out, what do you believe is the most effective single strategy a company can implement to significantly reduce the occurrence of rework within their operations?arrow_forwardDurban woman, Nombulelo Mkumla, took to social media last week to share how she discovered the rodent.In a lengthy Facebook post, she said she purchased the loaf of bread from a local shop after work on August 27.For the next days, Mkumla proceeded to use slices of bread from the load to make toast."Then, on the morning of August 31, I took the bread out of the fridge to make toast and noticed something disgusting andscary. I took a picture and sent it to my friends, and one of them said, 'Yi mpuku leyo tshomi' [That's a rat friend]“."I was in denial and suggested it might be something else, but the rat scenario made sense - it's possible the rat got into thebread at the factory, and no one noticed," Mkumla said.She went back to the shop she'd bought the bread from and was told to lay a complaint directly with the supplier.She sent an email with a video and photographs of the bread.Mkumla said she was later contacted by a man from Sasko who apologised for the incident.According to…arrow_forward
- PepsiCo South Africa says the incident where a woman discovered part of a rodent in her loaf of bread, is anisolated occurrence.Durban woman, Nombulelo Mkumla, took to social media last week to share how she discovered the rodent.In a lengthy Facebook post, she said she purchased the loaf of bread from a local shop after work on August 27.For the next days, Mkumla proceeded to use slices of bread from the load to make toast."Then, on the morning of August 31, I took the bread out of the fridge to make toast and noticed something disgusting andscary. I took a picture and sent it to my friends, and one of them said, 'Yi mpuku leyo tshomi' [That's a rat friend]“."I was in denial and suggested it might be something else, but the rat scenario made sense - it's possible the rat got into thebread at the factory, and no one noticed," Mkumla said.She went back to the shop she'd bought the bread from and was told to lay a complaint directly with the supplier.She sent an email with a video and…arrow_forwardDurban woman, Nombulelo Mkumla, took to social media last week to share how she discovered the rodent.In a lengthy Facebook post, she said she purchased the loaf of bread from a local shop after work on August 27.For the next days, Mkumla proceeded to use slices of bread from the load to make toast."Then, on the morning of August 31, I took the bread out of the fridge to make toast and noticed something disgusting andscary. I took a picture and sent it to my friends, and one of them said, 'Yi mpuku leyo tshomi' [That's a rat friend]“."I was in denial and suggested it might be something else, but the rat scenario made sense - it's possible the rat got into thebread at the factory, and no one noticed," Mkumla said.She went back to the shop she'd bought the bread from and was told to lay a complaint directly with the supplier.She sent an email with a video and photographs of the bread.Mkumla said she was later contacted by a man from Sasko who apologised for the incident.According to…arrow_forwardRead the project statement and answer ALL of the questions that follow PROJECT STATEMENT The African Integrated High-Speed Railway Network (AIHSRN). African nations are preparing to invest billions in a significant overhaul of their rail infrastructure as part of an ambitious plan for the continent. One of the key projects underway is the African Integrated High-Speed Railway Network (AIHSRN), which aims to connect Africa's capital cities and major commercial centres with a high-speed railway network to enhance continental trade and competition. This network will span 2,000 km (1,243 miles) and connect 60 cities, including Nairobi, Lagos, Cairo, and Dakar. It will improve access to essential markets, enhance economic cooperation, and encourage regional collaboration. The plan is poised to revolutionise intra-African trade by reducing travel times and lowering transportation costs, making trade between African nations more competitive. The trains will be capable of reaching speeds of up…arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,MarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing
