Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 47AP

(a)

To determine

The force of static friction exerted by the carousel on the bag.

(a)

Expert Solution
Check Mark

Answer to Problem 47AP

The static friction force exerted by the carousel on the bag is 106N_.

Explanation of Solution

Write the expression for the angular speed of the luggage as.

  ω=2πT                                                                                                         (I)

Here, ω is the angular speed of the luggage and T is time period to complete one rotation by the luggage.

Write the expression for the angular speed of the luggage in terms on linear speed as.

  ω=vr                                                                                                          (II)

Here, v is the linear speed of the luggage and r is the radius of rotation.

Substitute vr for ω in equation (I)

  vr=2πT

Simplify the above expression for v as.

  v=2πrT                                                                                                       (III)

Write the expression for centripetal acceleration for luggage as.

  ac=v2r                                                                                                     (IV)

Here, ac is centripetal acceleration for luggage.

If the luggage carousel is steadily rotating about its vertical axis then three forces act on the luggage. The static friction force acts along the inclined metallic surface in an outward direction, normal reaction force exerts by the metallic surface on the luggage in normal to the metallic plane and force due to weight acts downward.

As the luggage is rotating in a horizontal plane so centripetal acceleration will acts in x-direction.

The forces act on the luggage on luggage carousel as shown below.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 6, Problem 47AP

Write the expression corresponding to Newton’s second law of motion in x-direction as.

  fcos20°nsin20°=mac                                                                          (V)

Substitute v2r for ac in equation (V).

  fcos20°nsin20°=mv2r                                                                        (VI)

Multiply cos20° on both sides in equation (VI)

  fcos220°ncos20°sin20°=mv2rcos20°                                            (VII)

Simplify the equation (VII).

  ncos20°sin20°=fcos220°mv2rcos20°                                            (VIII)

Here, f is static friction force, n is normal reaction force exerted by the metallic surface on the luggage and m is mass of the luggage.

Write the expression corresponding to the condition of equilibrium in y-direction as.

  fsin20°+ncos20°mg=0

Re-arrange the terms.

  fsin20°+ncos20°=mg                                                                          (IX)

Multiply sin20° on both sides in the equation (IX).

  fsin220°+nsin20°cos20°=mgsin20°                                                   (X)

Substitute fcos220°mv2rcos20° for ncos20°sin20° in equation (X).

  fsin220°+fcos220°mv2rcos20°=mgsin20°f(sin220°+cos220°)=mv2rcos20°+mgsin20°

Simplify the above expression for f as.

  f=mv2rcos20°+mgsin20°                                                                     (XI)

Conclusion:

Substitute 7.46m for r and 38.0s for T in equation (III).

  v=2π(7.46m)(38.0s)=1.233m/s1.23m/s

Substitute 30kg for m, 7.46m for r, 1.23m/s for v and 9.80m/s2 for g in equation (XI).

  f=(30kg)(1.23m/s)2(7.46m)cos20°+(30kg)(9.80m/s2)sin20°=5.71N+100.55N=106.271N106N

Thus, the static friction force exerted by the carousel on the bag is 106N_.

(b)

To determine

The coefficient of static friction between the bag and the carousel.

(b)

Expert Solution
Check Mark

Answer to Problem 47AP

The coefficient of static friction between the bag and the carousel is 0.39_.

Explanation of Solution

Multiply equation (VI) by sin20° on the both sides.

  fcos20°sin20°+nsin220°=mv2rsin20°

Simplify the above expression for fcos20°sin20°

  fcos20°sin20°=mv2rsin20°+nsin220°                                              (XII)

Multiply cos20° on both sides in the equation (IX).

  fcos20°sin20°+ncos220°=mgcos20°                                              (XIII)

Substitute mv2rsin20°+nsin220° for fcos20°sin20° in equation (XIII).

  mv2rsin20°+nsin220°+ncos220°=mgcos20°n(sin220°+cos220°)=mgcos20°mv2rsin20°

Simplify the above expression for n as.

  n=mgcos20°mv2rsin20°                                                                 (XIV).

Write the expression for the coefficient of static friction as.

  μs=fn                                                                                                     (XV)

Here, μs is static friction coefficient.

Conclusion:

Substitute 7.94m for r and 34.0s for T in equation (III).

  v=2π(7.94m)(34.0s)=1.4673m/s1.47m/s

Substitute 30kg for m, 7.94m for r, 1.47m/s for v and 9.80m/s2 for g in equation (XIV).

  n=(30kg)(9.80m/s2)cos20°(30kg)(1.47m/s)2(7.94m)sin20°=276.2696N2.792N=273.4N273N

Substitute 273N for n and 106N for n  in equation (XV).

  μs=(106N)273N=0.38820.39

Thus, the coefficient of static friction between the bag and the carousel is 0.39_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 6 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 6 - Prob. 7OQCh. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - Prob. 5CQCh. 6 - If someone told you that astronauts are weightless...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Why does a pilot tend to black out when pulling...Ch. 6 - A pail of water can be whirled in a vertical path...Ch. 6 - Prob. 1PCh. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - Prob. 7PCh. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Prob. 26PCh. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - Prob. 35PCh. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - Prob. 38APCh. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - Prob. 47APCh. 6 - Prob. 48APCh. 6 - Prob. 49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Prob. 55APCh. 6 - Prob. 56APCh. 6 - Prob. 57APCh. 6 - Review. A piece of putty is initially located at...Ch. 6 - Prob. 59APCh. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - Prob. 62APCh. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - Prob. 64APCh. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 69CPCh. 6 - Prob. 70CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY