Understanding Our Universe
3rd Edition
ISBN: 9780393614428
Author: PALEN, Stacy, Kay, Laura, Blumenthal, George (george Ray)
Publisher: W.w. Norton & Company,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 43QAP
To determine
The average temperature of a planet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Soon after Earth was formed, heat released by the decay of radioactive elements raised the average internal temperature from 300 to 3000 K, at about which value it remains today. Assuming an average coefficient of volume expansion of 3.0 * 10-5 K-1, by how much has the radius of Earth increased since the planet was formed?
The average temperature of the atmosphere has increased by 0.4°C over the last thirty years. Estimate how much energy has gone into warming up the planet in this way. Keep in mind that the atmosphere has a mass of 5 × 1018kg, and the specific heat capacity of air is about 1 Jg−1K−1.
How do we get to this answer (2×1021J)
Consider a planet where Solar onstant = 1360 W /m2 and albedo=0.30. If the planet has a water vapor feedback so that the number of layers n is a function of surface temperature nT = (T – 254.5)/100, what is the equilibrium surface temperature?
Chapter 6 Solutions
Understanding Our Universe
Ch. 6.1 - Prob. 6.1CYUCh. 6.2 - Prob. 6.2CYUCh. 6.3 - Prob. 6.3CYUCh. 6.4 - Prob. 6.4CYUCh. 6.5 - Prob. 6.5CYUCh. 6 - Prob. 1QAPCh. 6 - Prob. 2QAPCh. 6 - Prob. 3QAPCh. 6 - Prob. 4QAPCh. 6 - Prob. 5QAP
Ch. 6 - Prob. 6QAPCh. 6 - Prob. 7QAPCh. 6 - Prob. 8QAPCh. 6 - Prob. 9QAPCh. 6 - Prob. 10QAPCh. 6 - Prob. 11QAPCh. 6 - Prob. 12QAPCh. 6 - Prob. 13QAPCh. 6 - Prob. 14QAPCh. 6 - Prob. 15QAPCh. 6 - Prob. 16QAPCh. 6 - Prob. 17QAPCh. 6 - Prob. 18QAPCh. 6 - Prob. 19QAPCh. 6 - Prob. 20QAPCh. 6 - Prob. 21QAPCh. 6 - Prob. 22QAPCh. 6 - Prob. 23QAPCh. 6 - Prob. 24QAPCh. 6 - Prob. 25QAPCh. 6 - Prob. 26QAPCh. 6 - Prob. 27QAPCh. 6 - Prob. 28QAPCh. 6 - Prob. 29QAPCh. 6 - Prob. 30QAPCh. 6 - Prob. 31QAPCh. 6 - Prob. 32QAPCh. 6 - Prob. 33QAPCh. 6 - Prob. 34QAPCh. 6 - Prob. 35QAPCh. 6 - Prob. 36QAPCh. 6 - Prob. 37QAPCh. 6 - Prob. 38QAPCh. 6 - Prob. 39QAPCh. 6 - Prob. 40QAPCh. 6 - Prob. 41QAPCh. 6 - Prob. 42QAPCh. 6 - Prob. 43QAPCh. 6 - Prob. 44QAPCh. 6 - Prob. 45QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The average temperature on Venus is 460°C what is the temperature in degrees Fahrenheit?arrow_forwardThe radiant flux at Earth is 1365 W/m2. Say we move towards the sun to a radius that is 1/3 the radius of the Earth's orbit. By what factor would the radiant flux increase or decrease?arrow_forwardSuppose that a planet with no atmosphere orbits a Sunlike star at the same radius as the Earth’s orbit and keeps the same face toward the sun at all times. The planet reflects 40% of the light falling on it, and the average temperature on the facing surface is nearly uniform and 185 K larger than the nearly uniform temperature on its back surface. What is the planet’s average temperature? The planet's average planetary temperature is _______ K.arrow_forward
- Consider a planet where Solar constant = 1360 W /m2 and albedo =0.30. If n=0, what is the equilibrium surface temperature of the planet? If S increases to 1370 W/m2 and n remains zero, what is the new equilibrium surface temperature? If the planet has a water vapor feedback so that the number of layers n is a function of surface temperature nT = (T – 254.5)/100, what is the equilibrium surface temperature? Considering the answers above, calculate the climate feedback factor g for this planet.arrow_forwardMeteors sometimes strike Earth, converting most of their kinetic energy into heat. If a 90-kg meteor hits the ocean at 2.8x104 m/s and 84% of its kinetic energy goes into heating water, how many kg of water could it warm up by 4.8 °C? Give 1000 kg). your answer in metric tons (1 metric tonarrow_forwardThe weather channel reported that the current temperature at the town of Fairbanks Alaska is 50 °F. What is the corresponding value of this temperature on the Centigrade scale?arrow_forward
- How is the distance from the sun for planets in our solar system related to the mean temperature of each planet? To find out, a scatterplot that relates the natural log of the distance of each planet (including Pluto) from the sun in millions of miles and the natural log of the mean planetary temperature in Kelvin was created. In(Temperature) vs. In(Distance) 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 4.8 4.6 4.4 4.2 4 4 6 7 8. In(Distance) Predictor Coef 7.9009 SE Coef P Conatant 0.4381 18.03 0.000 In Distance -0.4536 0.0706 -6.42 0.004 s = 0.3446 R-Sq = 85.5 R-8q (adj) = 83.2% Based on the scatterplot and computer output, a reasonable estimate of mean temperature in Kelvin for Saturn, which is 886.7 million miles away from the sun is: O 4.822 degrees Kelvin because ý = -0.4536(In 886.7) + 7.9009 = 4.822. O 124.2 degrees Kelvin because in y = -0,4536(in 886,7) + 7.9009 =4,822 and e4.822 = 124.2. O 709.0 degrees Kelvin because In y = - 0.4536(log 886.7) + 7.9009 =6.564 and e6.564 = 709.0. O…arrow_forwardIn a warm room a naked resting person has a skin temperature of 33k°if the room temperature is 29co,what is the body surface area if the rate of heart loss due to convection is 43 watt and the convection const.(7.1watt/m?. k°) 1.8 m2 1.6 m2 1.7 m2 1.5 m?arrow_forwardThe average temperature of the atmosphere has increased by 0.4°C over the last thirty years. Estimate how much energy has gone into warming up the planet in this way. Keep in mind that the atmosphere has a mass of 5 × 1018kg, and the specific heat capacity of air is about 1 Jg−1K−1.arrow_forward
- The intensity of solar radiation reaching Mars averages about 580 W/m2. a) Assuming the Sun radiates as a blackbody, estimate the surface temperature of the Sun. b) Assuming that Mars behaves like a blackbody, how much energy is absorbed per unit time. What is its equilibrium temperature if all this energy is re-radiated back into space?arrow_forwardIf the average normal temperature decreases with altitude in the troposphere is 6.5 °C/km, calculate the approximate temperature at 6 km if the surface temperature is 16 °C. Lapse rate = 0.005645 degC/marrow_forwardIn a warm room a naked resting person has a skin temperature of 33°C if the room temperature is 29° C, what is the body surface area if the rate of heat loss due to convection is 43watt and the convection constant K =7.1 watt /m?.K Choose the right answer: 1.8m? 1.5m2 O 1.7m2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios