
Write the orbital diagram tor an atom of
(a) Na (b) O (c) Co
(d) Cl

(a)
Interpretation:
The orbital diagram for Na should be written.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 40QAP
The orbital diagram for Na is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of sodium atom denoted by Na is 11, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Sodium, since the electrons are present in both the s and p-sublevel, therefore l=0 for s- sublevel,
This means 2l+1 = 2(0) +1= 1
This means that I orbital is present in each s- sublevel.
In case of p-sublevel the total number of orbitals are:
2l +1
2 (1) +1
2 +1=3.
The orbital diagram for its electronic configuration is shown below:

(b)
Interpretation:
The orbital diagram for O should be written.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
To show the distribution of electrons in the various orbitals, orbital diagrams are used.
Answer to Problem 40QAP
The orbital diagram for O is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Oxygen atom denoted by O is 8, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Oxygen, since the electrons are present in both s and p-sublevel, l=0 for s and l=1 for p-sublevels
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals are
2(1) +1
2+1
3
This means that three orbitals are present in each p-sublevel of Oxygen atom.
The orbital diagram for its electronic configuration is shown below:

(c)
Interpretation:
The orbital diagram for Co should be written.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
To show the distribution of electrons in the various orbitals, orbital diagrams are used.
Answer to Problem 40QAP
The orbital diagram for Co is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Cobalt atom denoted by Co is 27, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Cobalt, since the electrons are present in both s and p-sublevel, l=0 for s and l=1 for p-sublevels
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals are
2(1) +1
2+1
3
This means that three orbitals are present in p-sublevel of Cobalt atom.
For d- sublevel since l=2, therefore number of orbitals = 2(2)+1=5
The orbital diagram for its electronic configuration is shown below:

(d)
Interpretation:
The orbital diagram for Cl element should be written.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
To show the distribution of electrons in the various orbitals, orbital diagrams are used.
Answer to Problem 40QAP
The orbital diagram for Cl is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Chlorine atom denoted by Cl is 17, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Chlorine, since the electrons are present in s and p-sublevel, l=0 for s and l=1 for p
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals are
2(1) +1
2+1
3
This means that three orbitals are present in each p-sublevel of Cl atom.
The orbital diagram for its electronic configuration is shown below:
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Chemistry: Principles and Reactions, 8th, Loose-Leaf + OWLv2, 1 term (6 months) Printed Access Card
- Polar solutes are most likely to dissolve into _____, and _____ are most likely to dissolve into nonpolar solvents. A. nonpolar solutes; polar solvents B. nonpolar solvents; polar solvents C. polar solvents; nonpolar solutes D. polar solutes; nonpolar solventsarrow_forwardDeducing the Peactants Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Xarrow_forwardDraw all 8 stereoisomers, circling each pair of enantiomer(s)/ mirror image compound(s)arrow_forward
- Bookmarks Profiles Tab Window Help Chemical Formula - Aktiv Che X + → C 11 a app.aktiv.com Google Chrome isn't your default browser Set as default Question 12 of 16 Q Fri Feb 2 Verify it's you New Chrome availabl- Write the balanced molecular chemical equation for the reaction in aqueous solution for mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be sure to include the proper phases for all species within the reaction. 3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq) ean Ui mate co ence an climate bility inc ulnerabili women, main critic CLIMATE-INI ernational + 10 O 2 W FEB 1 + 4- 3- 2- 2 2 ( 3 4 NS 28 2 ty 56 + 2+ 3+ 4+ 7 8 9 0 5 (s) (1) Ch O 8 9 (g) (aq) Hg NR CI Cr x H₂O A 80 Q A DII A F2 F3 FA F5 F6 F7 F8 F9 #3 EA $ do 50 % 6 CO & 7 E R T Y U 8 ( 9 0 F10 34 F11 川 F12 Subr + delete 0 { P }arrow_forwardDeducing the reactants of a Diels-Alder reaction n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. >arrow_forwardPredict the major products of the following organic reaction: + Some important notes: A ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure.arrow_forward
- if the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
