Concept explainers
Find the equations for slope and deflection of the beam using direct integration method.
Answer to Problem 3P
The equation for slope for segment AB is
The equation for deflection for segment AB is
The equation for slope for segment BC is
The equation for deflection for segment BC is
Explanation of Solution
Calculation:
Draw the free body diagram of the beam as in Figure (1).
Refer Figure (1),
Find the reaction at support A.
Apply vertical equilibrium along y-axis.
Consider upward force as positive.
Find the moment at A.
Consider anticlockwise moment as positive.
Segment AB:
Consider a section
Sketch the free body diagram when section
Refer Figure (2),
Take the moment at section
Write the equation for
Find the equation for slope
Integrate Equation (1) with respect to x.
Find the equation for deflection
Integrate again Equation (2) with respect to x.
Find the integration constants
Apply boundary conditions in Equation (2):
At
Apply boundary conditions in Equation (1):
At
Find the equation for slope of segment AB.
Substitute 0 for
Thus, the equation for slope of segment AB is
Find the equation for deflection of segment AB.
Substitute 0 for
Thus, the equation for deflection is
Segment BC:
Consider a section
Sketch the free body diagram when section
Refer Figure 3.
Write the equation for bending moment at section
Write the equation for
Write the equation for slope.
Integrate Equation (4) with respect to x.
Write the equation for deflection.
Integrate Equation (5) with respect to x.
Find the integration constants
Apply boundary conditions in Equation (3):
At
Apply boundary conditions in Equation (4):
At
Find the equation for slope of segment BC.
Substitute
Thus, the equation for slope of segment BC is
Find the equation for deflection of segment BC.
Substitute
Thus, the equation for deflection of segment BC is
Want to see more full solutions like this?
Chapter 6 Solutions
STRUCTURAL ANALYSIS (LL)
- Q2. Write the flexibility matrix corresponding to coordinates 1 and 2 for the structures shown. 13 ans: l 4 11 3 [16 51 6EI 126EI 5 2 (a) A -1- 2 (b) A B Constant EI 2arrow_forwardPlease solve with drawingarrow_forwardQ1: Compute the missing measurement of the lines AB & CD (using trigonometric method), and the coordinates of closed loop traverse ABCD as shown in the figure below. C 20 (due N) N 73° 18' E B S 41° 12' E མམ་བ A (100, 100) D 60 (due W)arrow_forward
- Name: Q.1 select the lightest W12 shape for column AB that support a service dead and live loads Po-150k and P-200k as shown in Figure. The beams and columns are oriented about the major axis and the columns are braced at top and mid-height using pinned end connections for out of plane buckling. ASTM A992 steel is used. Select the suitable answer below: I U B 8.00 All dimensions in feet 30.00 W18.76 8091 B Parrow_forward2) Determine volume of bioreactor SP 2nd order kinetics. V= ks2 Yieldsarrow_forwardThe question is in Turkish You need to explain the process in detailarrow_forward
- Q3. Design by LRFD maximum size side SMAW fillet welds required to develop the loads Po= 7. kips and PL-60kips for an L6x4x1/2, using E70XX electrodes steel. The member is connected on the sides of the 6-in leg and is subject to alternating loads. Draw the layout of welding. Note: 1-5/8 in. 1. All Steel sections are A36 2. The loads effect through the angle center of gravity. L6x4x1/2 Angle C.G. Parrow_forwardDesign the size side SMAW fillet welds required to develop the loads PD= 7. kips and PL=60kips for an L6x4x1/2, using E70XX electrodes steel. The member is to be connected with side welds and a weld at the end of the Q2 angle to a 5/8- inch thickness gusset plate. Balance the fillet welds around the center of gravity of the angle as shown in Figure (2). Use A36 steel. Draw the layout of welding. t=5/8 in. L 6x4x1/2 Angle C.G. P4 Figure -2-arrow_forward1. What is length of a curve if the design speed is 85mph. A grades of a road is 3% and -2% and has stopping sight distance is 820ft. Determine whether S<L or S>Larrow_forward