Write the orbital diagram for
(a) Li(b) P(c) F(d) Fe
(a)
Interpretation:
To write the orbital diagram for each of the Li element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel.To show the distribution of electrons in the various orbitals, orbital diagrams are used.The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 39QAP
The orbital diagram for Li is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Lithium atom denoted by Li is 3, therefore its ground state electronic configuration is:
1s22s1
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins.No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins.The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Lithium, since the electrons are present in only s-sublevel,l=0.
This means 2l+1 = 2(0) +1= 1
Hence, one orbital is present for each sublevel. The orbital diagram for its electronic configuration is shown below:
(b)
Interpretation:
To write the orbital diagram for each of the P element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 39QAP
The orbital diagram for P is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Phosphorus atom denoted by P is 15, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Phosphorus, since the electrons are present in both s and p-sublevel ,l=0 for s and l=1 for p-sublevels
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals is
2(1) +1
2+1
3
This means that three orbitals are present in each p-sublevel of Phosphorus atom.
The orbital diagram for its electronic configuration is shown below:
(c)
Interpretation:
To write the orbital diagram for each of the F element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 39QAP
The orbital diagram for F is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Fluorine atom denoted by F is 9, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Fluorine, since the electrons are present in both s and p-sublevel, l=0 for s and l=1 for p-sublevels
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals is
2(1) +1
2+1
3
This means that three orbitals are present in p-sublevel of Fluorine atom.
The orbital diagram for its electronic configuration is shown below:
(d)
Interpretation:
To write the orbital diagram for each of the Fe element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel.The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
To show the distribution of electrons in the various orbitals, orbital diagrams are used.
Answer to Problem 39QAP
The orbital diagram for Fe is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Iron atom denoted by Fe is 26, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Iron, since the electrons are present in s, p and d-sublevel, l=0 for s, l=1 for p and l=2 for d-sublevel.
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals is:
2(1) +1
2+1
3
This means that three orbitals are present in each p-sublevel of Fe atom.
For a d-sublevel, the total number of orbitals is:
2(2) + 1=5
Hence there are five orbitals present in d-sublevel of Fe atom.
The orbital diagram for its electronic configuration is shown below:
Want to see more full solutions like this?
Chapter 6 Solutions
CHEMISTRY:PRIN.+REACTIONS-OWLV2 ACCESS
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning