
Write the orbital diagram for
(a) Li(b) P(c) F(d) Fe

(a)
Interpretation:
To write the orbital diagram for each of the Li element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel.To show the distribution of electrons in the various orbitals, orbital diagrams are used.The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 39QAP
The orbital diagram for Li is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Lithium atom denoted by Li is 3, therefore its ground state electronic configuration is:
1s22s1
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins.No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins.The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Lithium, since the electrons are present in only s-sublevel,l=0.
This means 2l+1 = 2(0) +1= 1
Hence, one orbital is present for each sublevel. The orbital diagram for its electronic configuration is shown below:

(b)
Interpretation:
To write the orbital diagram for each of the P element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 39QAP
The orbital diagram for P is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Phosphorus atom denoted by P is 15, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Phosphorus, since the electrons are present in both s and p-sublevel ,l=0 for s and l=1 for p-sublevels
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals is
2(1) +1
2+1
3
This means that three orbitals are present in each p-sublevel of Phosphorus atom.
The orbital diagram for its electronic configuration is shown below:

(c)
Interpretation:
To write the orbital diagram for each of the F element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Answer to Problem 39QAP
The orbital diagram for F is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Fluorine atom denoted by F is 9, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Fluorine, since the electrons are present in both s and p-sublevel, l=0 for s and l=1 for p-sublevels
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals is
2(1) +1
2+1
3
This means that three orbitals are present in p-sublevel of Fluorine atom.
The orbital diagram for its electronic configuration is shown below:

(d)
Interpretation:
To write the orbital diagram for each of the Fe element.
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel.The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
To show the distribution of electrons in the various orbitals, orbital diagrams are used.
Answer to Problem 39QAP
The orbital diagram for Fe is:
Explanation of Solution
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Iron atom denoted by Fe is 26, therefore its ground state electronic configuration is:
According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Iron, since the electrons are present in s, p and d-sublevel, l=0 for s, l=1 for p and l=2 for d-sublevel.
This means 2l+1 = 2(0) +1= 1
Hence one orbital is present for each s-sublevel.
For a p-sublevel, the total number of orbitals is:
2(1) +1
2+1
3
This means that three orbitals are present in each p-sublevel of Fe atom.
For a d-sublevel, the total number of orbitals is:
2(2) + 1=5
Hence there are five orbitals present in d-sublevel of Fe atom.
The orbital diagram for its electronic configuration is shown below:
Want to see more full solutions like this?
Chapter 6 Solutions
EBK CHEMISTRY: PRINCIPLES AND REACTIONS
- Bookmarks Profiles Tab Window Help Chemical Formula - Aktiv Che X + → C 11 a app.aktiv.com Google Chrome isn't your default browser Set as default Question 12 of 16 Q Fri Feb 2 Verify it's you New Chrome availabl- Write the balanced molecular chemical equation for the reaction in aqueous solution for mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be sure to include the proper phases for all species within the reaction. 3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq) ean Ui mate co ence an climate bility inc ulnerabili women, main critic CLIMATE-INI ernational + 10 O 2 W FEB 1 + 4- 3- 2- 2 2 ( 3 4 NS 28 2 ty 56 + 2+ 3+ 4+ 7 8 9 0 5 (s) (1) Ch O 8 9 (g) (aq) Hg NR CI Cr x H₂O A 80 Q A DII A F2 F3 FA F5 F6 F7 F8 F9 #3 EA $ do 50 % 6 CO & 7 E R T Y U 8 ( 9 0 F10 34 F11 川 F12 Subr + delete 0 { P }arrow_forwardDeducing the reactants of a Diels-Alder reaction n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. >arrow_forwardPredict the major products of the following organic reaction: + Some important notes: A ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure.arrow_forward
- if the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardreciprocal lattices rotates along with the real space lattices of the crystal. true or false?arrow_forwardDeducing the reactants of a Diels-Alder reaction vn the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ O If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Click and drag to start drawing a structure. Product can't be made in one step. Explanation Checkarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




