
Concept explainers
(a)
The maximum and minimum terminal speed for the skydivers.
(a)

Answer to Problem 39PQ
The maximum and minimum terminal speed of the skydivers are given below.
skydiver | Weight (N) | Length (m) | Radius (m) | Maximum (m/s) | Minimum (m/s) |
A | |||||
B | |||||
C |
Explanation of Solution
Write the formula for the terminal velocity of an object.
Here,
When the skydiver is pointing head down, the terminal velocity is maximum. The
Re-write the equation (I) for maximum terminal speed.
Here,
When the skydiver is pointing belly to earth, the terminal velocity is minimum. The
Re-write the equation (I) for minimum terminal speed.
Here,
Conclusion:
Substitute
Substitute
Similarly the maximum and minimum terminal speed of the skydiver B and C can be calculated.
The table below shows the maximum and minimum terminal velocity of the all three skydivers.
skydiver | Weight (N) | Length (m) | Radius (m) | Maximum (m/s) | Minimum (m/s) |
A | |||||
B | |||||
C |
(b)
The order in which the skydivers should leave the plane in order to form the formation.
(b)

Answer to Problem 39PQ
The order that should be followed to make the formation is C, B, A.
Explanation of Solution
To form the formation of the figure 6.1 all the divers at some point should reach together. Since the diver C has the lowest terminal speed, he should leave the plane first followed by diver B and last diver A.
In the order C, B and A, the divers B and A can initially travel head down to reach to the next divers. Then they can face the belly to down.
Conclusion:
The order that should be followed to make the formation is C, B, A.
(c)
The time that the first skydiver has to wait after jumping to join the formation. The change in waiting time for the first skydiver to join formation if it takes
(c)

Answer to Problem 39PQ
The time that the first skydiver has to wait after jumping to join the formation is
Explanation of Solution
The total wait time for the first skydiver is the total time required for the formation. It is equal to the time taken for the jump of skydiver B and A, then the time taken by the skydiver A to catch up with the skydiver C or the wait time for diver A.
The time gap between the divers to leave the plane is
Write the formula for the distance travelled by skydiver A.
Here,
Write the formula for the distance travelled by the skydiver C.
Here,
Since both the divers travel the same distance.
Re-write the above equation to get an equation for
Conclusion:
Substitute
Thus the total wait time for first skydiver is
If it takes if
Want to see more full solutions like this?
Chapter 6 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
- 8 Two moving charged particles exert forces on each other because each creates a magnetic field that acts on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third law if and only if rx (vi × 2) = 0.arrow_forward6 The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about (a) (b) the point (2, -1, 5). Careful about the direction of ŕ between the two points. the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).arrow_forward5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward
- 1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forwardA ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





