
Concept explainers
Find the slope

Answer to Problem 34P
The slope
The deflection
The slope
The slope
The deflection
Explanation of Solution
Given information:
The Young’s modulus (E) is 30,000 ksi.
The moment of inertia of the section AB is (I) is
The moment of inertia of the section BD is (I) is
Calculation:
Consider Young’s modulus (E) of the beam is constant.
To draw a
Show the free body diagram of the given beam as in Figure (1).
Refer Figure (1),
Consider upward is positive and downward is negative.
Consider clockwise is negative and counterclowise is positive.
Refer Figure (1),
Consider reaction at A and C as
Take moment about point B.
Determine the reaction at C;
Determine the reaction at support A;
Determine the moment at A:
Show the reactions of the given beam as in Figure (2).
Determine the bending moment at B;
Determine the bending moment at C;
Determine the bending moment at D;
Determine the positive bending moment at A;
Show the reaction and point load of the beam as in Figure (3).
Determine the value of
Substitute
Show the
Show the elastic curve as in Figure (5).
The slope at point B can be calculated by evaluating the change in slope between A and B.
Express the change in slope using the first moment-area theorem as follows:
Here, b is the width and h is the height of the respective triangle and rectangle.
Substitute 16 ft for
Determine the slope B (left) using the relation;
Substitute 30,000 ksi for E and
Hence, the slope at B (left) is
Determine the deflection at B using the relation;
Substitute
Determine the deflection at B (left) using the relation;
Substitute 30,000 ksi for E and
Hence, the deflection at B (left) is
Determine the deflection between B and C using the relation;
Here, b is the width and h is the height of the triangle.
Substitute 8 ft for b and
Express the relationship between the deflection and slope of span BC as follows:
Here,
Substitute
Determine the slope between B and C using the relation;
Substitute 8 ft for b and
Determine the slope at B (right) using the relation;
Substitute
Substitute 30,000 ksi for E and
Hence, the slope at B (right) is
Determine the slope between C and D using the relation;
Here, b is the width and h is the height of the triangle.
Substitute 8 ft for b and
Determine the slope at D using the relation;
Substitute
Substitute 30,000 ksi for E and
Hence, the slope at point D is
Determine the deflection between C and D using the relation;
Substitute
Determine the deflection at point D using the relation;
Substitute 8 ft for
Substitute 30,000 ksi for E and
Hence, the deflection at point D is
Want to see more full solutions like this?
Chapter 6 Solutions
Structural Analysis, Si Edition (mindtap Course List)
- (5) The simply supported beam shown in figure supports uniformly distributed characteristicdead and imposed loads of 5 kNm-1 each, as well as a characteristic imposed point load of 30 kN at mid-span. Assuming the beam is fully laterally restrained and there is nominaltorsional restrain at supports, select a suitable UB section in S275 steel to satisfy bendingand shear considerations. Also, check the selected UB section against the deflection. (40 Marks)arrow_forwardA simply supported beam is subjected to the end couples (bending is about the strong axis) and the axial load shown in the figure below. These moments and axial load are from service loads and consist of equal parts dead load and live load. Lateral support is provided only at the ends. Neglect the weight of the beam and investigate this member as a beam-column. Use Fy = 50 ksi. Suppose that P = 40 k and M = 68 ft-k. For W10 x 33: Ix = = 171 in.4; for L = 10 ft and C for Lc = 10 ft: = 1.0: фь Мп = 134 ft-kips and Mn/b = 89.3 ft-kips; Pn = 330 kips and Pr/c = 220 kips. W10 X 33 P M M 10' a. Use LRFD. Select the interaction formula: A) Pu 8 + Mur Muy + <1.0 Ферп 9 Фь Мих Pu Mux Muy B) + + 20c Pn Фь Мих ФоМпу .) <1.0 -Select- Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member is -Select- b. Use ASD. Select the interaction formula: Pa A) + Pn/Sc Max Mnx/b May + < 1.0 Mny 1/526 Pa Max May B) + + <1.0 2Pn/c Mnx/b Mny/b -Select- ✓…arrow_forward5. Use the graph and data table below to determine: strain(in/in) 0 Stress (psi) 30,000 25,000 20,00 15,000 stress (psi) 0 2,500 0.00025 5,000 0.0005 7,500 0.00075 9,600 0.00096 11,170 0.001117 13,500 0.00135 10,000 16,612 0.001875 15,430 0.0025 5,000 22,350 0.00312 26,800 0.0042 25,810 0.00472 Stress Strain Curve ☑ 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Strain (in/in) a) Proportional limits: (stress in units of psi, strain in units of in/in) b) Modulus of elasticity (units: ksi) c) Ultimate strength (units: psi) d) Rupture strength (units: psi)arrow_forward
- Q2. Find the support reactions at A and F for the given structure in Fig.(2). 80kN-m 2 kN 1 m 2 m Im 1 m 2 m Fig. (2)arrow_forwardA continuous foundation is shown in Figure 1. If the load eccentricity, e = 0.5 meter. Determine the ultimate load Qult per unit length of the foundation. Use Mayerhof’s effective area method. Given B = 2 meter, Df = 2.0 meter , ϕ = 40 , c’ = 0 kN/m3, γ = 16.5 kN/m3 . Calculate also the Factor of Safety for the shallow foundation.arrow_forwardA simply supported beam is subjected to the end couples (bending is about the strong axis) and the axial load shown in the figure below. These moments and axial load are from service loads and consist of equal parts dead load and live load. Lateral support is provided only at the ends. Neglect the weight of the beam and investigate this member as a beam-column. Use Fy that P40 k and M = 68 ft-k. For W10 × 33: I = 171 in.4; 10 ft and C₁ = 1.0: Mn = 134 ft-kips and Mn/₁ = 89.3 ft-kips; = 50 ksi. Suppose for Lb for Lc - = 10 ft: Pn 330 kips and Pr/c = 220 kips. W10 X 33 P M M 10' Pu A) + Ферп 9 a. Use LRFD. Select the interaction formula: Mur 84, Mnz Muy + <1.0 Фь Мпу Pu Mur Muy B) + + ≤ 1.0 20c Pn Фь Мих nx ФоМпу -Select- ✓ Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member is -Select- b. Use ASD. Select the interaction formula: Ра 8 Max May A) + + <1.0 Pn/c Mnx/b Mny/b Pa Max May B) + + 1.0 2Pn/c Mnx/b Mny/b -Select- Compute the…arrow_forward
- Determine whether the given member satisfies the appropriate AISC interaction equation. Do not consider moment amplification. The loads are 50% dead load and 50% live load. Bending is about the x axis, and the steel is ASTM A992. Suppose that P = 280 k. For W12 x 106 with Fy = 50 ksi and Lc = 14 feet: Ферп 1130 kips, Pn/Sc = 755 kips, Mn = 597 ft-kips, Mn/₁ = 397 ft-kips. P 240 ft-k W12 X 106 14' K₁ = Ky = 1.0 240 ft-k a. Use LRFD. P Determine the factored axial compressive load and the factored bending moment. (Express your answers to three significant figures.) P₁ = Mu = kips ft-kips Select the interaction formula: P₁ A) + Мих Muy + ≤1.0 Ферп 9 Фь Мих of Mny Pu Мих Muy B) + 20c Pn Mnz + <1.0 Фь Мпу -Select- Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member -Select- b. Use ASD. the AISC Specification. Determine the total axial compressive load and the maximum bending moment. (Express your answers to three significant…arrow_forwardRefer to the following figure: K 6 m T 0.25 H 0.75 H 1 m A c,O,Y 3 m B 2 m 1 m C Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 17.5 kN/m³, c = 30 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the sheet-pile section modulus for the braced cut. Use all = 150 MN/m². (Enter your answer to three significant figures.) S = ×105 m³/marrow_forwardRefer to the braced cut shown in the following figure: -3.5 m 1 m A Sand Y,',c' 2 m B 2 m C 1.5 m Given: γ · = 21 kN/m³, ′ = 40°, and c' = 0. The struts are located at 4 m center-to-center in the plan. Determine the strut loads at levels A, B, and C. (Enter your answers to three significant figures.) PA = kN PB = kN Pc kNarrow_forward
- Refer to the following figures: 6 m 0.25 H 0.75 H 3 m 2 m 1 m A с.ф.у 1 m B Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 18.4 kN/m³, c = 30 kN/m², p = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the strut loads at levels A, B, and C. (Enter your answers to three significant figures.) PA= kN PB = kN Pc= kNarrow_forwardRefer to the following figure: 6 m 3 m 2 m 1 m A c,φ,γ 1 m B Given: y = 17.9 kN/m³, c = 60 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. The length of the cut is 12.5 m. Determine the factor of safety against bottom heave for the braced cut. Use the equation CNC (1+0.25) FS = զ с x + H B' :) H (Enter your answer to three significant figures.) FS =arrow_forwardGiven Data Initial Road Design: • Design speed: 85 km/h • • Radius of both circular arcs: R = 845 m = 0.44 m/s³ = 250 m • Rate of gain of radial acceleration on all transitions: q Length of straight section between the curves: Lstr Redesigned Road: New design speed: 120 km/h • New radius: R' = 2500 marrow_forward
