Student Solutions Manual for Devore's Probability and Statistics for Engineering and the Sciences, 9th
Student Solutions Manual for Devore's Probability and Statistics for Engineering and the Sciences, 9th
9th Edition
ISBN: 9798214004020
Author: Jay L. Devore
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 31SE

An estimator θ is said to be consistent if for any > 0, P ( | θ ^  -  θ |     )    0 as n → ∞. That is, θ ^ is consistent if, as the sample size gets larger, it is less and less likely that θ ^ will be further than ∈ from the true value of θ. Show that X ¯ is a consistent estimator of μ when σ2 < ∞ by using Chebyshev’s inequality from Exercise 44 of Chapter 3. [Hint: The inequality can be rewritten in the form

P ( | Y  -  μ Y |     ) σ Y 2 /

Now identify Y with X ¯ .]

Expert Solution & Answer
Check Mark
To determine

Show that X¯ is a consistent estimator of μ when σ2<, using Chebyshev’s inequality.

Explanation of Solution

Calculation:

Chebyshev’s inequality can be rewritten as:

P(|YμY|)σY2.

The random variable considered here is the sample mean, X¯. The population mean is μ and the population variance is σ2. It is known that the distribution of the sample mean, X¯, for a sample of size n, has mean μ and variance σ2n.

The quantity is a pre-defined, very small quantity.

Replace Y by X¯, μY by μ, σY2 by σ2n in Chebyshev’s inequality:

P(|X¯μ|)σ2nP(|X¯μ|)σ2n.

When σ2<, that is finite, then, the right hand side of the inequality tends to 0 as n.

As a result, when n, P(|X¯μ|)0.

Thus, using Chebyshev’s inequality, it can be shown that X¯ is a consistent estimator of μ when σ2<.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. (5 pts) Conduct a chi-square contingency test (test of independence) to assess whether there is an association between the behavior of the elderly person (did not stop to talk, did stop to talk) and their likelihood of falling. Below, please state your null and alternative hypotheses, calculate your expected values and write them in the table, compute the test statistic, test the null by comparing your test statistic to the critical value in Table A (p. 713-714) of your textbook and/or estimating the P-value, and provide your conclusions in written form. Make sure to show your work. Did not stop walking to talk Stopped walking to talk Suffered a fall 12 11 Totals 23 Did not suffer a fall | 2 Totals 35 37 14 46 60 T
Question 2 Parts manufactured by an injection molding process are subjected to a compressive strength test. Twenty samples of five parts each are collected, and the compressive strengths (in psi) are shown in Table 2. Table 2: Strength Data for Question 2 Sample Number x1 x2 23 x4 x5 R 1 83.0 2 88.6 78.3 78.8 3 85.7 75.8 84.3 81.2 78.7 75.7 77.0 71.0 84.2 81.0 79.1 7.3 80.2 17.6 75.2 80.4 10.4 4 80.8 74.4 82.5 74.1 75.7 77.5 8.4 5 83.4 78.4 82.6 78.2 78.9 80.3 5.2 File Preview 6 75.3 79.9 87.3 89.7 81.8 82.8 14.5 7 74.5 78.0 80.8 73.4 79.7 77.3 7.4 8 79.2 84.4 81.5 86.0 74.5 81.1 11.4 9 80.5 86.2 76.2 64.1 80.2 81.4 9.9 10 75.7 75.2 71.1 82.1 74.3 75.7 10.9 11 80.0 81.5 78.4 73.8 78.1 78.4 7.7 12 80.6 81.8 79.3 73.8 81.7 79.4 8.0 13 82.7 81.3 79.1 82.0 79.5 80.9 3.6 14 79.2 74.9 78.6 77.7 75.3 77.1 4.3 15 85.5 82.1 82.8 73.4 71.7 79.1 13.8 16 78.8 79.6 80.2 79.1 80.8 79.7 2.0 17 82.1 78.2 18 84.5 76.9 75.5 83.5 81.2 19 79.0 77.8 20 84.5 73.1 78.2 82.1 79.2 81.1 7.6 81.2 84.4 81.6 80.8…
Name: Lab Time: Quiz 7 & 8 (Take Home) - due Wednesday, Feb. 26 Contingency Analysis (Ch. 9) In lab 5, part 3, you will create a mosaic plot and conducted a chi-square contingency test to evaluate whether elderly patients who did not stop walking to talk (vs. those who did stop) were more likely to suffer a fall in the next six months. I have tabulated the data below. Answer the questions below. Please show your calculations on this or a separate sheet. Did not stop walking to talk Stopped walking to talk Totals Suffered a fall Did not suffer a fall Totals 12 11 23 2 35 37 14 14 46 60 Quiz 7: 1. (2 pts) Compute the odds of falling for each group. Compute the odds ratio for those who did not stop walking vs. those who did stop walking. Interpret your result verbally.

Chapter 6 Solutions

Student Solutions Manual for Devore's Probability and Statistics for Engineering and the Sciences, 9th

Ch. 6.1 - Of n1 randomly selected male smokers, X1 smoked...Ch. 6.1 - Suppose a certain type of fertilizer has an...Ch. 6.1 - Consider a random sample X1,..., Xn from the pdf...Ch. 6.1 - A sample of n captured Pandemonium jet fighters...Ch. 6.1 - Let X1, X2,..., Xn represent a random sample from...Ch. 6.1 - Suppose the true average growth of one type of...Ch. 6.1 - In Chapter 3, we defined a negative binomial rv as...Ch. 6.1 - Let X1, X2,..., Xn be a random sample from a pdf...Ch. 6.1 - An investigator wishes to estimate the proportion...Ch. 6.2 - A diagnostic test for a certain disease is applied...Ch. 6.2 - Let X have a Weibull distribution with parameters ...Ch. 6.2 - Let X denote the proportion of allotted time that...Ch. 6.2 - Let X represent the error in making a measurement...Ch. 6.2 - A vehicle with a particular defect in its emission...Ch. 6.2 - The shear strength of each of ten test spot welds...Ch. 6.2 - Consider randomly selecting n segments of pipe and...Ch. 6.2 - Let X1,..., Xn be a random sample from a gamma...Ch. 6.2 - Prob. 28ECh. 6.2 - Consider a random sample X1, X2,, Xn from the...Ch. 6.2 - At time t = 0, 20 identical components are tested....Ch. 6 - An estimator is said to be consistent if for any ...Ch. 6 - a. Let X1,.., Xn be a random sample from a uniform...Ch. 6 - At time t = 0, there is one individual alive in a...Ch. 6 - The mean squared error of an estimator is MSE ()...Ch. 6 - Prob. 35SECh. 6 - When the population distribution is normal, the...Ch. 6 - When the sample standard deviation S is based on a...Ch. 6 - Each of n specimens is to be weighed twice on the...
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License