(a)
Interpretation:
The formation of following solutions should be explained:
500.0 mL of a 5.32 % w/w
Concept Introduction:
Concentration has several ways to be calculated. It typically relates an amount of solute and the solution. In mass of solute per unit mass of solvent, or w/w, the total mass of the solute, solvent and solution must be known.
The formula for w/w is as follows:
Here,
When solving for the required amount of solute, the following formula is used:
Answer to Problem 20P
Explanation of Solution
Given Information:
The concentration is shown as w/w meaning this is mass of solute per mass of solvent.
Since, density of water is 1 g/mL thus, 500 mL of water contains 500 g of water. Substitute known data and solve for mass of solute.
Thus,
(b)
Interpretation:
The formation of following solutions should be explained:
342.0 mL of a 0.443 % w/w benzene solution in toluene.
Concept Introduction:
Concentration has several ways to be calculated. It typically relates an amount of solute and the solution. In mass of solute per unit mass of solvent, or w/w, the total mass of the solute, solvent and solution must be known.
The formula for w/w is as follows:
Here,
When solving for the required amount of solute, the following formula is used:
(b)
Answer to Problem 20P
Explanation of Solution
Given Information:
The concentration is shown as w/w meaning this is mass of solute per mass of solvent.
In this specific case, we do not know which volume or mass each material is, but we do know which one the solvent is, toluene.
Now, get the total volume equation.
Solve simultaneously.
Then, add
(c)
Interpretation:
The formation of following solutions should be explained:
125.5 mL of a 34.2 % w/w dimethyl sulfoxide solution in acetone.
Concept Introduction:
Concentration has several ways to be calculated. It typically relates an amount of solute and the solution. In mass of solute per unit mass of solvent, or w/w, the total mass of the solute, solvent and solution must be known.
The formula for w/w is as follows:
Here,
When solving for the required amount of solute, the following formula is used:
Answer to Problem 20P
Explanation of Solution
Given:
In this specific case, we do not know which volume or mass each material is, but we do know which one is the solvent that is acetone.
Now, get the total volume equation.
Solve simultaneously.
Then, add
Want to see more full solutions like this?
Chapter 6 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
- Nonearrow_forward4. Experimental Procedure. a. How many (total) data plots are to be completed for this experiment? Account for each. b. What information is to be extracted from each data plot?arrow_forwardProvide the IUPAC name of the following molecule. Don't forget to include the proper stereochemistry where appropriate.arrow_forward
- 3. 2. 1. On the graph below, plot the volume of rain in milliliters versus its height in centimeters for the 400 mL beaker. Draw a straight line through the points and label it "400 mL beaker." Volume (mL) 400 350 300 250 200 150 750 mL Florence Volume Versus Height of Water 400 mL beaker 100 50 0 0 2 3 4 5 Height (cm) 6 7 8 9 10 Explain why the data points for the beaker lie roughly on a straight line. What kind of relationship is this? How do you know? (see page 276 text) the design of the beaker is a uniform cylinder the volume of liquid increases evenly with its height resulting in a linear relationship. What volume would you predict for 10.0 cm of water? Explain how you arrived at your answer. Use the data table and the graph to assist you in answering the question. 4. Plot the volume of rain in milliliters versus its height in centimeters for the 250 mL Florence flask on the same graph. Draw a best-fit curve through the points and label it "250 mL Florence flask." oke camearrow_forwardShow work. Don't give Ai generated solutionarrow_forwardIn the video, we looked at the absorbance of a certain substance and how it varies depending on what wavelength of light we are looking at. Below is a similar scan of a different substance. What color BEST describes how this substance will appear? Absorbance (AU) Violet Blue Green Orange 1.2 1.0- 0.8- 0.6- 0.4- 0.2 0.0 450 500 550 600 650 700 Wavelength (nm) violet indigo blue green yellow orange red Red O Cannot tell from this information In the above graph, what causes -450 nm wavelength of light to have a higher absorbance than light with a -550 nm wavelength? Check all that are true. The distance the light travels is different The different data points are for different substances The concentration is different at different times in the experiment Epsilon (molar absortivity) is different at different wavelengthsarrow_forward
- 5. a. Data were collected for Trial 1 to determine the molar mass of a nonvolatile solid solute when dissolved in cyclo- hexane. Complete the table for the analysis (See Report Sheet). Record calculated values with the correct number of significant figures. B. Freezing Point of Cyclohexane plus Calculation Zone Unknown Solute 2. Mass of cyclohexane (g) 10.14 Part C.4 3. Mass of added solute (g) 0.255 C. Calculations 1. k; for cyclohexane (°C⚫ kg/mol) 20.0 2. Freezing point change, AT, (°C) 3.04 Part C.6 3. Mass of cyclohexane in solution (kg) 4. Moles of solute, total (mol) Show calculation. 5. Mass of solute in solution, total (g) 6. Molar mass of solute (g/mol) Show calculation.arrow_forwardDraw and name the R groups of all 20 amino acids.arrow_forward3. Two solutions are prepared using the same solute: Solution A: 0.14 g of the solute dissolves in 15.4 g of t-butanol Solution B: 0.17 g of the solute dissolves in 12.7 g of cyclohexane Which solution has the greatest freezing point change? Show calculations and explain.arrow_forward
- 2. Give the ground state electron configuration (e.g., 02s² σ*2s² П 2p²) for these molecules and deduce its bond order. Ground State Configuration Bond Order H2+ 02- N2arrow_forward1. This experiment is more about understanding the colligative properties of a solution rather than the determination of the molar mass of a solid. a. Define colligative properties. b. Which of the following solutes has the greatest effect on the colligative properties for a given mass of pure water? Explain. (i) 0.01 mol of CaCl2 (ii) 0.01 mol of KNO3 (iii) 0.01 mol of CO(NH2)2 (an electrolyte) (an electrolyte) (a nonelectrolyte)arrow_forward5. b. For Trials 2 and 3, the molar mass of the solute was 151 g/mol and 143 g/mol respectively. a. What is the average molar mass of the solute ? b. What are the standard deviation and the relative standard deviation (%RSD) for the molar mass of the solute ?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning