
Concept explainers
(a)
Find the outdoor-indoor temperature difference in degrees Fahrenheit.
(a)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Calculation:
The difference between the outdoor-indoor temperatures is,
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(b)
Find the outdoor-indoor temperature difference in degrees Rankine.
(b)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Formula used:
Formula to calculate the outdoor temperature in degrees Rankine is,
Here,
Formula to calculate the indoor temperature in degrees Rankine is,
Here,
Calculation:
Substitute
The outside temperature is
Substitute
The inside temperature is
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(c)
Find the outdoor-indoor temperature difference in degrees Celsius.
(c)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Formula used:
Formula to calculate the outdoor temperature in degrees Celsius is,
Here,
Formula to calculate the indoor temperature in degrees Celsius is,
Here,
Calculation:
Substitute
The outside temperature is
Substitute
The inside temperature is
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(d)
Find the outdoor-indoor temperature difference in Kelvin.
(d)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Formula used:
Formula to calculate the outdoor temperature in Kelvin is,
Here,
Formula to calculate the indoor temperature in Kelvin is,
Here,
Calculation:
Refer from part (c),
The inside room temperature
The outside air temperature
Substitute
The outside temperature is
Substitute
The inside temperature is
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(e)
Check whether one degree temperature difference in Celsius equal to one temperature difference in kelvin, and one degree temperature in Fahrenheit equal to one degree temperature difference in Rankine.
(e)

Explanation of Solution
Case 1:
Refer to part (c),
The outdoor-indoor temperature difference is
Refer to part (d),
The outdoor-indoor temperature difference is
From part (c) and part (d), outdoor-indoor temperature differences are equal.
Note:
Let the temperature difference in Kelvin is,
Formula to calculate the temperature in degree Celsius is,
Here,
Substitute
Thus, one degree temperature difference in Celsius is equal to one temperature difference in kelvin.
Case 2:
Refer to part (a),
The outdoor-indoor temperature difference is
Refer to part (b),
The outdoor-indoor temperature difference is
From part (a) and part (b), outdoor-indoor temperature differences are equal.
Note:
Let the temperature difference in Rankine is,
Formula to calculate the temperature in Rankine is,
Here,
Substitute
Therefore, one degree temperature in Fahrenheit is equal to one degree temperature difference in Rankine.
Conclusion:
Hence, one degree temperature difference in Celsius equal to one temperature difference in kelvin, and one degree temperature in Fahrenheit equal to one degree temperature difference in Rankine has been explained.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
- H.W: An activated sludge process operates under the following data: Q=0.21 m³/s, S.- 250 mg/l, S-6.2 mg/l, MLVSS (X) = 3500 mg/1, 0= 10 days Return sludge concentration (X)= 10000 mg/l, Y=0.5, K₁ =0.06 d', volatile super solid represent 80% of SS, Find: 1- Treatment efficiency 2- Reactor volume 3- Qwa (sludge wasted from areation tank) 4- Qur (sludge wasted from recirculation tank) 5- Quantity of sludge wasted/day 6- Recirculated ratio V.X VX Qwa Qwr= Qwr-Xr 0Xarrow_forwardFor the beam shown, where should a uniformly distributed downward live load, wl, be placed to cause the maximum upward reaction at support A? (D, E, and F are the supports, from left to right, to the right of C.) B C a. From A to B and D to E b. From A to D and E to F c. From B to D and E to F ☑ d. From B to C and D to E L Larrow_forwardQuestion 1 1. A solid shaft of 1.55 m is used as a tractor propeller (prop) shaft. The shaft twists through 1.8 while rotating at 900 rpm. The diameter of the shaft is 60 mm and the modulus of rigidity is 85 GPa. Calculate 1.1 The maximum shear stress in the shaft 1.2 The power transmitted by the shaft. 2. The tractor has undergone minor modifications to increase the transmitted power by 20%. The solid shaft is replaced by a lighter hollow shaft of the same material, with a dimeter ratio of 2:1. Calculate the suitable dimeters of the hollow shaft.arrow_forward
- Use Area Moment Method of Beam Deflectionsarrow_forwardDetermine rotations at all the nodes of the beam and reactions at the supports. Assume support 1 and 3 are roller and support 2 is pinned, L1=1.25m, L2=3.75m and w=60kN/m. Please show all working and FBD's where relevant.arrow_forwardspecific gravity of the soil is 1.41 percentage of water content by weight at field capacity and wilting point are 15% and 7% respectively calculate the equivalent moisture content as equivalent depth for 1.2m root zone: A. At permanent wilting point B. At field capacity C. For ready available water Ex 4-3: If the crop consumptive use in Ex(4-2) is 18 m³/donum/day,calculate: A. Irrigation interval in days B. Field water duty assuming 40% losses during irrigation C. Amount of added water to irrigate one donum. n: CFc- IWC) * As *D Lg dn - Q.te A date. A d9 Q IWC- 20% FC-271 Qg-40e D=100cm sec area of the field. Ed=65% 1 hectare As 1.3arrow_forward
- ۰۹:۲۵ ZV9 HW2-C.pdf Dept: Civil Eng. Kerbala HW2 3rd Year (C) Ex 4-1: The field capacity and wilting point as depth equivalent of soil are 178mm and 102 mm respectively. PAD-60% Calculate the irrigation interval if the water consumptive use is 4.5 mm/day. Ex 4-2: The specific gravity of the soil is 1.41 percentage of water content by weight at field capacity and wilting point are 15% and 7% respectively. a) calculate the equivalent depth of moisture content for 1.2m root zone and PAD 70% at permanent wilting point, at field capacity and for readily available water b) If the crop consumptive use is 18 m/donum/day, calculate: Irrigation interval in days, field water duty assuming 40% losses during irrigation and amount of added water to irrigate one hectare. Ex4-3: Using Blaney-Criddle formula, calculate the irrigation interval through specific interval of plant growth according to the following data: . Mean air temperature 25 C percentage of day light hour through the month 8.4% Crop…arrow_forwardDetermine the global stiffness matrix of the beam shown in Fig. 3. Assume supports at 1 and 3 are rollers and the support at 2 is a pinned support. Indicate the degrees of freedom in all the stiffness matrices. EI is constant, w=60kN/m, L1=1.25m and L2=3.75m please explain how the code numbers for global matrix are determined in detailarrow_forwardFor the truss shown in Fig 2, determine the nodal displacement and member forces for all elements of the truss. Assume for each member A = 0.0015 m2 and E = 200 GPa please show all working, relevant FBD's and use ID's indicated in the diagram, if using an alpha numerical in equations please indicate where it is being applied to in the truss.arrow_forward
- Determine the global stiffness matrix of the beam shown in Fig. 3. Assume supports at 1 and 3 are rollers and the support at 2 is a pinned support. Indicate the degrees of freedom in all the stiffness matrices. EI is constant, w=60kN/m, L1=1.25m and L2=3.45m please explain how the code numbers for global matrix are determined in detailarrow_forward= 20 kips = 20 kips B w₁ = 2 kips/ft 20" 12'- 7760 12" 6"arrow_forward= 20 kips = 20 kips B w₁ = 2 kips/ft 20" 12'- 7760 12" 6"arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning





