
(a)
Whether the statement is true or false.
(a)

Explanation of Solution
Introduction:
The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
Conclusion:
Thus, for non-zero work done, the initial and final speeds mustdiffer i.e. there must be a change in speed of the particle. Hence, the given statement is true.
(b)
Whether the statement is true or false.
(b)

Explanation of Solution
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
Introduction:The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
Conclusion:Thus, for non-zero work done, the initial and final velocities must differ i.e. there must be a change in velocity of the particle. Hence, the given statement is true.
(c)
Whether the statement is true or false.
(c)

Explanation of Solution
Introduction:
The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
For a particle moving in straight line, i.e. its direction of motion is not changing, if its speed changes with time then, the net work done on it will be non-zero while if its speed is constant then, the net work done on it will be zero.
Conclusion:
Thus, for a particle moving in straight line, i.e. its direction of motion is not changing, and its speed changing with time then, the net work done on it will be non-zero. Hence, the given statement is true.
(d)
Whether the statement is true or false.
(d)

Explanation of Solution
Introduction:
The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
For a particle at rest, the speed is zero throughout and thus, work done on it will be zero.
Conclusion:
Thus, for a particle at constant rest, the initial and final velocities of the particle are same and thus work done is zero.
(e)
Whether the statement is true or false.
(e)

Explanation of Solution
Introduction:
The work done on a particle is given by the dot product of force acting on it and its displacement.
For a particle experiencing a force in a particular direction and having a displacement, the work done on it is given by the dot product of force acting on it and its displacement.
If the angle between force and displacement is
Conclusion:
Thus, if a force is always perpendicular to the velocity of particle, the angle betweenforce and displacement is
Want to see more full solutions like this?
Chapter 6 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Required information Two speakers vibrate in phase with each other at 523 Hz. At certain points in the room, the sound waves from the two speakers interfere destructively. One such point is 1.45 m from speaker #1 and is between 2.00 m and 4.00 m from speaker #2. The speed of sound in air is 343 m/s. How far is this point from speaker #2? marrow_forwarda) Consider the following function, where A is a constant. y(x,t) = A(x — vt). Can this represent a wave that travels along? Explain. b) Which of the following are possible traveling waves, provide your reasoning and give the velocity of the wave if it can be a traveling wave. e-(a²x²+b²²-2abtx b.1) y(x,t) b.2) y(x,t) = = A sin(ax² - bt²). 2 b.3) y(x,t) = A sin 2π (+) b.4) y(x,t) = A cos² 2π(t-x). b.5) y(x,t) = A cos wt sin(kx - wt)arrow_forwardThe capacitor in (Figure 1) is initially uncharged. The switch is closed at t=0. Immediately after the switch is closed, what is the current through the resistor R1, R2, and R3? What is the final charge on the capacitor? Please explain all steps.arrow_forward
- Suppose you have a lens system that is to be used primarily for 620-nm light. What is the second thinnest coating of fluorite (calcium fluoride) that would be non-reflective for this wavelength? × nm 434arrow_forwardThe angle between the axes of two polarizing filters is 19.0°. By how much does the second filter reduce the intensity of the light coming through the first? I = 0.106 40 xarrow_forwardAn oil slick on water is 82.3 nm thick and illuminated by white light incident perpendicular to its surface. What color does the oil appear (what is the most constructively reflected wavelength, in nanometers), given its index of refraction is 1.43? (Assume the index of refraction of water is 1.33.) wavelength color 675 × nm red (1 660 nm)arrow_forward
- A 1.50 μF capacitor is charging through a 16.0 Ω resistor using a 15.0 V battery. What will be the current when the capacitor has acquired 1/4 of its maximum charge? Please explain all stepsarrow_forwardIn the circuit shown in the figure (Figure 1), the 6.0 Ω resistor is consuming energy at a rate of 24 J/s when the current through it flows as shown. What are the polarity and emf of the battery E, assuming it has negligible internal resistance? Please explain all steps. I know you need to use the loop rule, but I keep getting the answer wrong.arrow_forwardIf you connect a 1.8 F and a 2.6 F capacitor in series, what will be the equivalent capacitance?arrow_forward
- Suppose that a particular heart defibrillator uses a 1.5 x 10-5 Farad capacitor. If it is charged up to a voltage of 7300 volts, how much energy is stored in the capacitor? Give your answer as the number of Joules.arrow_forwardThe voltage difference across an 8.3 nanometer thick cell membrane is 6.5 x 10-5volts. What is the magnitude of the electric field inside this cell membrane? (Assume the field is uniform, and give your answer as the number of Volts per meter... which is the same as the number of Newtons per Coulomb.)arrow_forwardThree identical capacitors are connected in parallel. When this parallel assembly of capacitors is connected to a 12 volt battery, a total of 3.1 x 10-5 coulombs flows through the battery. What is the capacitance of one individual capacitor? (Give your answer as the number of Farads.)arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





