
Concept explainers
a.
Find the explanatory variable and response variable to plot a
Find the direction, form and strength of the scatterplot.
a.

Answer to Problem 1E
Either weight in grams or weight in ounces could be the explanatory or response variable.
The association between the variables is straight, positive and strong.
Explanation of Solution
Given info:
The variables of the apples are given one is weight in grams and the other is weight in ounces.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables weight in grams and weight in ounces are associated variables.
Response variable:
The variable to be measured or observed in
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are weight in grams of apple and weight in ounces of apple.
That is, each apple’s weight is measured in two different scales.
Therefore, there will be chances for weight in grams to depend on weight in ounces and vice versa.
Thus, either weight in grams or weight in ounces could be the explanatory or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are weight in grams of apple and weight in ounces of apple.
That is, each apple’s weight is measured in two different scales.
Therefore, there will be chances for weight in grams to depend on weight in ounces and vice versa.
Thus, either weight in grams or weight in ounces could be the explanatory or response variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, weight in ounces increases or decreases with the increase or decrease in the weight in grams.
The pattern of the relationship between weight in ounces and weight in grams represents a straight line.
Hence, the association between the weight in ounces and weight in grams is linear.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, weight in ounces increases or decreases with the increase or decrease in the weight in grams.
Hence, the direction of the association is positive.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have perfect
Hence, the association between the variables is strong.
b.
Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
b.

Answer to Problem 1E
Circumference of apple is explanatory variable and weight is the response variable.
The association between the variables is straight, positive and strong.
Explanation of Solution
Given info:
The variables of the apples are given one is circumference in inches and the other is weight in ounces.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables circumference in inches and weight in ounces are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are circumference in inches of apple and weight in ounces of apple.
Three dimensional volume is nothing but the weight and one dimensional circumference explains the three dimensional volume.
Therefore, weight of the apple is predicted with the circumference of the apple.
That is, weight of the apple is depend on the circumference of the apple.
Thus, weight in ounces is dependent or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are circumference in inches of apple and weight in ounces of apple.
Weight of the apple is predicted with the circumference of the apple.
Thus, circumference in inches is independent or explanatory variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, weight in ounces increases or decreases with the increase or decrease in the circumference in inches of apple.
The pattern of the relationship between weight in ounces and circumference in inches of apple represents a straight line for same size apples.
Hence, the association between the weight in ounces and circumference in inches of apple is linear for same size apples.
The association curve will be apparent if the sample contains very large and very small apples.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, weight in ounces increases or decreases with the increase or decrease in the circumference in inches of apple.
Hence, the direction of the association is positive.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have perfect correlation between them.
Hence, the association between the variables is strong.
c.
Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
c.

Answer to Problem 1E
The variables shoe size and grade point average are not associated with each other.
Explanation of Solution
Given info:
The variables of the college freshmen are given one is shoe size and the other is grade point average.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
There is no relationship between the variables shoe size and grade point average.
Therefore, there is no association between the variables.
Hence, the discussion will not go further.
d.
Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
d.

Answer to Problem 1E
Circumference of apple is explanatory variable and weight is the response variable.
The association between the variables is straight, negative and strong.
Explanation of Solution
Given info:
The variables of the gasoline are given one is number of miles drove since filling up and the other is gallons remaining in the tank.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables number of miles drove since filling up and gallons remaining in the tank are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are number of miles drove since filling up and gallons remaining in the tank.
The fuel that is remained in the tank is dependent on the fuel that is used for driving.
Therefore, gallons remaining in the tank is predicted with the number of miles drove since filling up.
That is, gallons remaining in the tank is depend on the number of miles drove since filling up.
Thus, gallons remaining in the tank is dependent or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are number of miles drove since filling up and gallons remaining in the tank.
Gallons remaining in the tank is predicted with the number of miles drove since filling up.
Thus, the number of miles drove since filling up is independent or explanatory variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, gallons remaining in the tank decreases with the increase in the number of miles drove since filling up.
The pattern of the relationship between gallons remaining in the tank and the number of miles drove since filling up represents a straight line.
Hence, the association between the gallons remaining in the tank and the number of miles drove since filling up is linear.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, gallons remaining in the tank decreases with the increase in the number of miles drove since filling up and gallons remaining in the tank increases with the decrease in the number of miles drove since filling up.
Hence, the direction of the association is negative.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have moderate correlation between them.
Hence, the association between the variables is moderate.
Want to see more full solutions like this?
Chapter 6 Solutions
STATS:DATA+MODELS-W/DVD
- Please help me answer the following questions from this problem.arrow_forwardPlease help me find the sample variance for this question.arrow_forwardCrumbs Cookies was interested in seeing if there was an association between cookie flavor and whether or not there was frosting. Given are the results of the last week's orders. Frosting No Frosting Total Sugar Cookie 50 Red Velvet 66 136 Chocolate Chip 58 Total 220 400 Which category has the greatest joint frequency? Chocolate chip cookies with frosting Sugar cookies with no frosting Chocolate chip cookies Cookies with frostingarrow_forward
- The table given shows the length, in feet, of dolphins at an aquarium. 7 15 10 18 18 15 9 22 Are there any outliers in the data? There is an outlier at 22 feet. There is an outlier at 7 feet. There are outliers at 7 and 22 feet. There are no outliers.arrow_forwardStart by summarizing the key events in a clear and persuasive manner on the article Endrikat, J., Guenther, T. W., & Titus, R. (2020). Consequences of Strategic Performance Measurement Systems: A Meta-Analytic Review. Journal of Management Accounting Research?arrow_forwardThe table below was compiled for a middle school from the 2003 English/Language Arts PACT exam. Grade 6 7 8 Below Basic 60 62 76 Basic 87 134 140 Proficient 87 102 100 Advanced 42 24 21 Partition the likelihood ratio test statistic into 6 independent 1 df components. What conclusions can you draw from these components?arrow_forward
- What is the value of the maximum likelihood estimate, θ, of θ based on these data? Justify your answer. What does the value of θ suggest about the value of θ for this biased die compared with the value of θ associated with a fair, unbiased, die?arrow_forwardShow that L′(θ) = Cθ394(1 −2θ)604(395 −2000θ).arrow_forwarda) Let X and Y be independent random variables both with the same mean µ=0. Define a new random variable W = aX +bY, where a and b are constants. (i) Obtain an expression for E(W).arrow_forward
- The table below shows the estimated effects for a logistic regression model with squamous cell esophageal cancer (Y = 1, yes; Y = 0, no) as the response. Smoking status (S) equals 1 for at least one pack per day and 0 otherwise, alcohol consumption (A) equals the average number of alcohoic drinks consumed per day, and race (R) equals 1 for blacks and 0 for whites. Variable Effect (β) P-value Intercept -7.00 <0.01 Alcohol use 0.10 0.03 Smoking 1.20 <0.01 Race 0.30 0.02 Race × smoking 0.20 0.04 Write-out the prediction equation (i.e., the logistic regression model) when R = 0 and again when R = 1. Find the fitted Y S conditional odds ratio in each case. Next, write-out the logistic regression model when S = 0 and again when S = 1. Find the fitted Y R conditional odds ratio in each case.arrow_forwardThe chi-squared goodness-of-fit test can be used to test if data comes from a specific continuous distribution by binning the data to make it categorical. Using the OpenIntro Statistics county_complete dataset, test the hypothesis that the persons_per_household 2019 values come from a normal distribution with mean and standard deviation equal to that variable's mean and standard deviation. Use signficance level a = 0.01. In your solution you should 1. Formulate the hypotheses 2. Fill in this table Range (-⁰⁰, 2.34] (2.34, 2.81] (2.81, 3.27] (3.27,00) Observed 802 Expected 854.2 The first row has been filled in. That should give you a hint for how to calculate the expected frequencies. Remember that the expected frequencies are calculated under the assumption that the null hypothesis is true. FYI, the bounderies for each range were obtained using JASP's drag-and-drop cut function with 8 levels. Then some of the groups were merged. 3. Check any conditions required by the chi-squared…arrow_forwardSuppose that you want to estimate the mean monthly gross income of all households in your local community. You decide to estimate this population parameter by calling 150 randomly selected residents and asking each individual to report the household’s monthly income. Assume that you use the local phone directory as the frame in selecting the households to be included in your sample. What are some possible sources of error that might arise in your effort to estimate the population mean?arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





