In this chapter, we have learned about the
suppose it is hypothesized that it requires more energy to remove an electron from a metal that has atoms with one or more half-filled shells than from those that do not.
- Design a series of experiments involving the photoelectric effect that would test the hypothesis.
- What experimental apparatus would be needed to test the hypothesis? Its not necessary that you name actual equipment but rather that you imagine how the apparatus would work-think in terms of the types of measurements that would be needed, and what capability you would need in your apparatus.
- Describe the type of data you would collect and how you would analyze the data to see whether the hypothesis were correct.
- Could your experiments be extended to test the hypothesis for other parts of the periodic table, such as the lanthanide or actinide elements?
Interpretation: The experiments, apparatus and the type of data to test the given hypothesis is to be determined.
(a) A series of experiment involving the photoelectric effect that would test the hypothesis needs to be designed.
(b) The experimental apparatus required to test the given hypothesis should be determined.
(c)The type of data required to conclude whether the given hypothesis is correct or not should be determined.
(d) If the given hypothesis can be tested on lanthanides or actinides or not should be identified.
Concept Introduction: The light falls on the surface of the metal and results in the ejection of electron form its surface. This process is known as the photoelectric effect.
Answer to Problem 1DE
Solution: (a) When the light incident on the metal plate having one or more half-filled orbital; one does not observe the collection of electrons on the collector plate. But as the energy increases the electrons started collecting on the collector plate. This proves the given hypothesis.
(b) The experimental apparatus to study the photoelectric effect consists of the metal plate, collector plate, battery and voltmeter.
(c) The plot of stopping potential as a function of frequency is used to conclude that the given hypothesis is correct.
(d) The given hypothesis is not applicable on lanthanides and actinides because of the presence of d and f orbitals.
(a)
Explanation of Solution
The hypothesis says that that it requires more energy to remove an electron from the metal that has one or more half filled shells.
The ejection of electrons from the metal surface is tested by using the photoelectric effect by considering the apparatus consists of the metal plate on which the light is incident and the collector plate on which the electrons get collected. These two plates are connected to the electric circuit consists of battery, photodiode with amplifier and the voltmeter with reverse voltage.
When the light incident on the metal plate having one or more half filled orbital; one does not observed the collection of electrons on the collector plate. But as the energy increases the electrons starting collecting on the collector plate. This proves the given hypothesis.
(b)
Explanation:
The apparatus to study the photoelectric effect has the following parts,
- A photodiode with an amplifier.
- A digital voltmeter with reverse voltage.
- Batteries to operate amplifier and to provide reverse voltage.
- A monochromatic light source.
- The incident light beam intensity must adjust using a neutral filter.
The apparatus for testing the given hypothesis is shown below:
Figure 1
(c)
Explanation:
The data of frequency and wave length of different light source is collected and it is used in the apparatus of photoelectric effect. The different percentage transmission values as the function of intensity will be observed. The plot of stopping potential as a function of frequency will be observed from this data which conclude whether the hypothesis is correct or not.
(d)
Explanation:
The given hypothesis says that more energy is required to eject the electron form a metal having half filled orbitals as compared to those who have not. But the orbital of lanthanides and actinides are diffused in nature and they are larger in size. Therefore, they can easily accept and eject electrons by using lower energy radiation. Therefore, the given hypothesis cannot be tested on the lanthanides and actinides.
- The ejection of electrons is tested by using the apparatus consists of metal plate and collector plate.
- The experimental apparatus to study the photoelectric effect consists of the metal plate, collector plate, battery and voltmeter.
- The plot of stopping potential as a function of frequency is used to conclude that the given hypothesis is correct.
- The given hypothesis is not applicable on lanthanides and actinides because of the presence of d and f orbitals.
Want to see more full solutions like this?
Chapter 6 Solutions
EP CHEMISTRY:CENTRAL..-MOD.MASTERING
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Campbell Biology (11th Edition)
Living By Chemistry: First Edition Textbook
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forward
- NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardIn three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forward
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning