Essentials of Corporate Finance (Mcgraw-hill/Irwin Series in Finance, Insurance, and Real Estate)
Essentials of Corporate Finance (Mcgraw-hill/Irwin Series in Finance, Insurance, and Real Estate)
9th Edition
ISBN: 9781259277214
Author: Stephen A. Ross Franco Modigliani Professor of Financial Economics Professor, Randolph W Westerfield Robert R. Dockson Deans Chair in Bus. Admin., Bradford D Jordan Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 18QP

Bond Price Movements. Bond X is a premium bond making semiannual payments. The bond has a coupon rate of 8.5 percent, a YTM of 7 percent, and has 13 years to maturity. Bond Y is a discount bond making semiannual payments. This bond has a coupon rate of 7 percent, a YTM of 8.5 percent, and also has 13 years to maturity. What are the prices of these bonds today assuming both bonds have a $1,000 par value? If interest rates remain unchanged, what do you expect the prices of these bonds to be in one year? In three years? In eight years? In 12 years? In 13 years? What’s going on here? Illustrate your answers by graphing bond prices versus time to maturity.

Expert Solution & Answer
Check Mark
Summary Introduction

To determine: The bond’s price at different periods.

Introduction:

A bond refers to the debt securities issued by the governments or corporations for raising capital. The borrower does not return the face value until maturity. However, the investor receives the coupons every year until the date of maturity.

Bond price or bond value refers to the present value of the future cash inflows of the bond after discounting at the required rate of return.

Answer to Problem 18QP

The price of the bond at different periods is as follows:

Time to maturity

(Years)

Bond X Bond Y
13 $1,126.6776 $883.3285
12 $1,120.4378 $888.5195
10 $1,106.5930 $900.2923
5 $1,062.3745 $939.9184
1 $1,014.2477 $985.9048
0 $1,000.0000 $1,000.0000

Explanation of Solution

Given information:

Bond X is selling at a premium. The coupon rate of Bond X is 8.5 percent and its yield to maturity is 7 percent. The bond will mature in 13 years. Bond Y is selling at a discount. The coupon rate of Bond Y is 7 percent and its yield to maturity is 8.5 percent. The bond will mature in 13 years. Both the bonds make semiannual coupon payments. Assume that the face value of bonds is $1,000.

The formula to calculate annual coupon payment:

Annual coupon payment=Face value of the bond×Coupon rate

The formula to calculate the current price of the bond:

Bond value=C×[11(1+r)t]r+F(1+r)t

Where,

C” refers to the coupon paid per period

F” refers to the face value paid at maturity

“r” refers to the yield to maturity

“t” refers to the periods to maturity

Compute the bond price of Bond X at different maturities:

Compute the annual coupon payment of Bond X:

Annual coupon payment=Face value of the bond×Coupon rate=$1,000×8.5%=$85

Hence, the annual coupon payment of Bond X is $85.

The bond value or the price of Bond X at present:

The bond pays the coupons semiannually. The annual coupon payment is $85. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $42.50($85÷2).

Secondly, the remaining time to maturity is 13 years. As the coupon payment is semiannual, the semiannual periods to maturity are 26(13 years×2). In other words, “t” equals to 26 6-month periods.

Thirdly, the yield to maturity is 7 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 3.50 percent (7%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$42.50×[11(1+0.035)26]0.035+$1,000(1+0.035)26=$717.8399+$408.8378=$1,126.6776

Hence, the current price of the bond is $1,126.6776.

The bond value or the price of Bond X after one year:

The bond pays the coupons semiannually. The annual coupon payment is $85. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $42.50($85÷2).

Secondly, the remaining time to maturity is 12 years after one year from now. As the coupon payment is semiannual, the semiannual periods to maturity are 24(12 years×2). In other words, “t” equals to 24 6-month periods.

Thirdly, the yield to maturity is 7 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 3.50 percent (7%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$42.50×[11(1+0.035)24]0.035+$1,000(1+0.035)24=$682.4806+$437.9571=$1,120.4378

Hence, the price of the bond will be $1,120.4378 after one year.

The bond value or the price of Bond X after 3 years:

The bond pays the coupons semiannually. The annual coupon payment is $85. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $42.50($85÷2).

Secondly, the remaining time to maturity is 10 years after three years from now. As the coupon payment is semiannual, the semiannual periods to maturity are 20(10 years×2). In other words, “t” equals to 20 6-month periods.

Thirdly, the yield to maturity is 7 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 3.50 percent (7%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$42.50×[11(1+0.035)20]0.035+$1,000(1+0.035)20=$604.0271+$502.5658=$1,106.5930

Hence, the price of the bond will be $1,106.5930 after three years.

The bond value or the price of Bond X after eight years:

The bond pays the coupons semiannually. The annual coupon payment is $85. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $42.50($85÷2).

Secondly, the remaining time to maturity is 5 years after eight years from now. As the coupon payment is semiannual, the semiannual periods to maturity are 10(5 years×2). In other words, “t” equals to 10 6-month periods.

Thirdly, the yield to maturity is 7 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 3.50 percent (7%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$42.50×[11(1+0.035)10]0.035+$1,000(1+0.035)10=$353.4557+$708.9188=$1,062.3745

Hence, the price of the bond will be $1,062.3745 after eight years.

The bond value or the price of Bond X after twelve years:

The bond pays the coupons semiannually. The annual coupon payment is $85. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $42.50($85÷2).

Secondly, the remaining time to maturity is one year after twelve years from now. As the coupon payment is semiannual, the semiannual periods to maturity are two (1 year×2). In other words, “t” equals to two 6-month periods.

Thirdly, the yield to maturity is 7 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 3.50 percent (7%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$42.50×[11(1+0.035)2]0.035+$1,000(1+0.035)2=$80.7370+$933.5107=$1,014.2477

Hence, the price of the bond will be $1,014.2477 after twelve years.

The bond value or the price of Bond X after thirteen years:

The thirteenth year is the year of maturity for Bond X. In this year, the bondholder will receive the face value of the bond. Hence, the price of the bond will be $1,000 after thirteen years.

Compute the bond price of Bond Y at different maturities:

Compute the annual coupon payment of Bond Y:

Annual coupon payment=Face value of the bond×Coupon rate=$1,000×7%=$70

Hence, the annual coupon payment of Bond Y is $70.

The bond value or the price of Bond Y at present:

The bond pays the coupons semiannually. The annual coupon payment is $70. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $35($70÷2).

Secondly, the remaining time to maturity is 13 years. As the coupon payment is semiannual, the semiannual periods to maturity are 26(13 years×2). In other words, “t” equals to 26 6-month periods.

Thirdly, the yield to maturity is 8.5 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 4.25 percent (8.5%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$35×[11(1+0.0425)26]0.0425+$1,000(1+0.0425)26=$544.4669+$338.8616=$883.3285

Hence, the current price of the bond is $883.3285.

The bond value or the price of Bond Y after one year:

The bond pays the coupons semiannually. The annual coupon payment is $70. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $35($70÷2).

Secondly, the remaining time to maturity is 12 years after one year from now. As the coupon payment is semiannual, the semiannual periods to maturity are 24(12 years×2). In other words, “t” equals to 24 6-month periods.

Thirdly, the yield to maturity is 8.5 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 4.25 percent (8.5%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$35×[11(1+0.0425)24]0.0425+$1,000(1+0.0425)24=$520.2426+$368.2769=$888.5195

Hence, the price of the bond is $888.5195 after one year.

The bond value or the price of Bond Y after three years:

The bond pays the coupons semiannually. The annual coupon payment is $70. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $35($70÷2).

Secondly, the remaining time to maturity is 10 years after three years from now. As the coupon payment is semiannual, the semiannual periods to maturity are 20(10 years×2). In other words, “t” equals to 20 6-month periods.

Thirdly, the yield to maturity is 8.5 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 4.25 percent (8.5%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$35×[11(1+0.0425)20]0.0425+$1,000(1+0.0425)20=$465.3028+$434.9895=$900.2923

Hence, the price of the bond is $900.2923 after three years.

The bond value or the price of Bond Y after eight years:

The bond pays the coupons semiannually. The annual coupon payment is $70. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $35($70÷2).

Secondly, the remaining time to maturity is 5 years after three years from now. As the coupon payment is semiannual, the semiannual periods to maturity are 10(5 years×2). In other words, “t” equals to 10 6-month periods.

Thirdly, the yield to maturity is 8.5 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 4.25 percent (8.5%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$35×[11(1+0.0425)10]0.0425+$1,000(1+0.0425)10=$280.3811+$659.5373=$939.9184

Hence, the price of the bond is $939.9184 after eight years.

The bond value or the price of Bond Y after twelve years:

The bond pays the coupons semiannually. The annual coupon payment is $70. However, the bondholder will receive the same is two equal installments. Hence, semiannual coupon payment or the 6-month coupon payment is $35($70÷2).

Secondly, the remaining time to maturity is one year after twelve years from now. As the coupon payment is semiannual, the semiannual periods to maturity are two (1 year×2). In other words, “t” equals to two 6-month periods.

Thirdly, the yield to maturity is 8.5 percent per year. As the calculations are semiannual, the yield to maturity must also be semiannual. Hence, the semiannual or 6-month yield to maturity is 4.25 percent (8.5%÷2).

Bond value=C×[11(1+r)t]r+F(1+r)t=$35×[11(1+0.0425)2]0.0425+$1,000(1+0.0425)2=$65.7776+$920.1272=$985.9048

Hence, the price of the bond is $985.9048 after twelve years.

The bond value or the price of Bond Y after thirteen years:

The thirteenth year is the year of maturity for Bond Y. In this year, the bondholder will receive the face value of the bond. Hence, the price of the bond will be $1,000 after thirteen years.

Table indicating the bond prices of Bond X and Bond Y at different maturities:

Table 1

Time to maturity

(Years)

Bond X Bond Y
13 $1,126.6776 $883.3285
12 $1,120.4378 $888.5195
10 $1,106.5930 $900.2923
5 $1,062.3745 $939.9184
1 $1,014.2477 $985.9048
0 $1,000.0000 $1,000.0000

Graphical representation of the bond prices of Bond X and Bond Y from Table 1:

Essentials of Corporate Finance (Mcgraw-hill/Irwin Series in Finance, Insurance, and Real Estate), Chapter 6, Problem 18QP

Explanation of the graph:

The graph indicates a “pull to par” effect on the prices of the bonds. The face value of both the bonds is $1,000. Although Bond X is at a premium and Bond Y is at a discount, both the bonds will reach their par values at the time of maturity. The effect of reaching the face value or par value from a discount or premium is known as “pull to par”.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Bond X is a premium bond making semiannual payments. The bond pays a coupon rate of 7 percent, has a YTM of 5 percent, and has 19 years to maturity. Bond Y is a discount bond making semiannual payments. This bond pays a coupon rate of 5 percent, has a YTM of 7 percent, and also has 19 years to maturity. The bonds have a $1,000 par value. What is the price of each bond today? If interest rates remain unchanged, what do you expect the price of these bonds to be one year from now? In 11 years? In 14 years? In 16 years? In 19 years? (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.)
Bond X is a premium bond making semiannual payments. The bond pays a coupon rate of 7 percent, has a YTM of 5 percent, and has 17 years to maturity. Bond Y is a discount bond making semiannual payments. This bond pays a coupon rate of 5 percent, has a YTM of 7 percent, and also has 17 years to maturity. The bonds have a $1,000 par value.   What is the price of each bond today? If interest rates remain unchanged, what do you expect the price of these bonds to be one year from now? In seven years? In 12 years? In 16 years? In 17 years? (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.)
Bond X is a premium bond making semiannual payments. The bond pays a coupon rate of 8 percent, has a YTM of 6 percent, and has 18 years to maturity. Bond Y is a discount bond making semiannual payments. This bond pays a coupon rate of  6 percent, has a YTM of 8 percent, and also has 18 years to maturity. The bonds have a $1,000 par value.   What is the price of each bond today? (Do not round intermediate calculations. Round your answers to 2 decimal places, e.g., 32.16.)         Price of Bond X $      Price of Bond Y $        If interest rates remain unchanged, what do you expect the price of these bonds to be one year from now? In eight years? In 13 years? In 17 years? In 18 years? (Do not round intermediate calculations. Round your answers to 2 decimal places, e.g., 32.16.)   Price of bond    Bond X           Bond Y   One year $    $      Eight years $    $      13 years $    $      17 years $    $      18 years $    $

Chapter 6 Solutions

Essentials of Corporate Finance (Mcgraw-hill/Irwin Series in Finance, Insurance, and Real Estate)

Ch. 6.5 - Prob. 6.5ACQCh. 6.5 - Prob. 6.5BCQCh. 6.5 - Prob. 6.5CCQCh. 6.6 - Prob. 6.6ACQCh. 6.6 - Prob. 6.6BCQCh. 6.7 - What is the term structure of interest rates? What...Ch. 6.7 - Prob. 6.7BCQCh. 6.7 - What are the six components that make up a bonds...Ch. 6 - Section 6.1What is the coupon rate on a bond that...Ch. 6 - Section 6.2What is the provision in the bond...Ch. 6 - Section 6.3Do bond ratings consider default risk?Ch. 6 - Section 6.4What are the features of municipal...Ch. 6 - Prob. 6.5CCh. 6 - Prob. 6.6CCh. 6 - Prob. 6.7CCh. 6 - Prob. 1CTCRCh. 6 - Prob. 2CTCRCh. 6 - Prob. 3CTCRCh. 6 - Prob. 4CTCRCh. 6 - Prob. 5CTCRCh. 6 - Prob. 6CTCRCh. 6 - Prob. 7CTCRCh. 6 - Prob. 8CTCRCh. 6 - LO3 6.9Bond Ratings. Often, junk bonds are not...Ch. 6 - Crossover Bonds. Looking back at the crossover...Ch. 6 - Municipal Bonds. Why is it that municipal bonds...Ch. 6 - Treasury Market. All Treasury bonds are relatively...Ch. 6 - Prob. 13CTCRCh. 6 - Prob. 14CTCRCh. 6 - Prob. 15CTCRCh. 6 - Prob. 1QPCh. 6 - Interpreting Bond Yields. Suppose you buy a 7...Ch. 6 - Bond Prices. Lycan, Inc., has 7 percent coupon...Ch. 6 - Bond Yields. The Timberlake-Jackson Wardrobe Co....Ch. 6 - Prob. 5QPCh. 6 - Bond Prices. Harrison Co. issued 15-year bonds one...Ch. 6 - Prob. 7QPCh. 6 - Coupon Rates. Volbeat Corporation has bonds on the...Ch. 6 - Prob. 9QPCh. 6 - Prob. 10QPCh. 6 - Nominal and Real Returns. An investment offers a...Ch. 6 - Prob. 12QPCh. 6 - LO2 13PRINTED BY: V.SwathiPpreya@spi-global.com....Ch. 6 - Prob. 14QPCh. 6 - Prob. 15QPCh. 6 - Prob. 16QPCh. 6 - Valuing Bonds. Union Local School District has...Ch. 6 - Bond Price Movements. Bond X is a premium bond...Ch. 6 - LO2 19Interest Rate Risk. Both Bond Bill and Bond...Ch. 6 - Interest Rate Risk. Bond J has a coupon rate of 4...Ch. 6 - Bond Yields. PK Software has 6.3 percent coupon...Ch. 6 - Bond Yields. BDJ Co. wants to issue new 25-year...Ch. 6 - Prob. 23QPCh. 6 - Accrued Interest. You purchase a bond with a...Ch. 6 - Prob. 25QPCh. 6 - Prob. 26QPCh. 6 - Finding the Maturity. Youve just found a 10...Ch. 6 - Prob. 28QPCh. 6 - Prob. 29QPCh. 6 - Prob. 30QPCh. 6 - Prob. 31QPCh. 6 - Prob. 32QPCh. 6 - Prob. 33QPCh. 6 - Prob. 34QPCh. 6 - Prob. 35QPCh. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...Ch. 6 - Financing SS Airs Expansion Plans with a Bond...
Knowledge Booster
Background pattern image
Finance
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, finance and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Essentials Of Investments
Finance
ISBN:9781260013924
Author:Bodie, Zvi, Kane, Alex, MARCUS, Alan J.
Publisher:Mcgraw-hill Education,
Text book image
FUNDAMENTALS OF CORPORATE FINANCE
Finance
ISBN:9781260013962
Author:BREALEY
Publisher:RENT MCG
Text book image
Financial Management: Theory & Practice
Finance
ISBN:9781337909730
Author:Brigham
Publisher:Cengage
Text book image
Foundations Of Finance
Finance
ISBN:9780134897264
Author:KEOWN, Arthur J., Martin, John D., PETTY, J. William
Publisher:Pearson,
Text book image
Fundamentals of Financial Management (MindTap Cou...
Finance
ISBN:9781337395250
Author:Eugene F. Brigham, Joel F. Houston
Publisher:Cengage Learning
Text book image
Corporate Finance (The Mcgraw-hill/Irwin Series i...
Finance
ISBN:9780077861759
Author:Stephen A. Ross Franco Modigliani Professor of Financial Economics Professor, Randolph W Westerfield Robert R. Dockson Deans Chair in Bus. Admin., Jeffrey Jaffe, Bradford D Jordan Professor
Publisher:McGraw-Hill Education
Bond Valuation - A Quick Review; Author: Pat Obi;https://www.youtube.com/watch?v=xDWTPmqcWW4;License: Standard Youtube License