Rendezvous in space! A couple of astronauts agree to rendezvous in space after hours. Their plan is to let gravity bring them together. One of them has a mass of 65 kg and the other a mass of 72 kg, and they start from rest 20.0 m apart. (a) Make a free-body diagram of each astronaut, and use it to find his or her initial acceleration. As a rough approximation, we can model the astronauts as uniform spheres. (b) If the astronauts’ acceleration remained constant, how many days would they have to wait before reaching each other? (Careful! They both have acceleration toward each other.) (c) Would their acceleration, in fact, remain constant? If not, would it increase or decrease? Why?
Rendezvous in space! A couple of astronauts agree to rendezvous in space after hours. Their plan is to let gravity bring them together. One of them has a mass of 65 kg and the other a mass of 72 kg, and they start from rest 20.0 m apart. (a) Make a free-body diagram of each astronaut, and use it to find his or her initial acceleration. As a rough approximation, we can model the astronauts as uniform spheres. (b) If the astronauts’ acceleration remained constant, how many days would they have to wait before reaching each other? (Careful! They both have acceleration toward each other.) (c) Would their acceleration, in fact, remain constant? If not, would it increase or decrease? Why?
Rendezvous in space! A couple of astronauts agree to rendezvous in space after hours. Their plan is to let gravity bring them together. One of them has a mass of 65 kg and the other a mass of 72 kg, and they start from rest 20.0 m apart. (a) Make a free-body diagram of each astronaut, and use it to find his or her initial acceleration. As a rough approximation, we can model the astronauts as uniform spheres. (b) If the astronauts’ acceleration remained constant, how many days would they have to wait before reaching each other? (Careful! They both have acceleration toward each other.) (c) Would their acceleration, in fact, remain constant? If not, would it increase or decrease? Why?
What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V?
2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor?
3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA?
4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed?
5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.