bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 15CRP

(a)

To determine

Find the probability that 5 or more would have this blood type.

(a)

Expert Solution
Check Mark

Answer to Problem 15CRP

The probability that 5 or more would have this blood type is 0.8665.

Explanation of Solution

Calculation:

Conditions for normal approximation to the binomial:

For a binomial experiment with n number of trails, r number of success, probability of success for each trail p and probability of failure q=1p, the r has binomial distribution which is approximated to a normal distribution if,

  • np>5
  • nq>5

Mean:

The mean formula for the binomial distribution using normal approximation is,

μ=np

In the formula n denotes number of trails, and p denotes probability of success.

Standard deviation:

The standard deviation formula for the binomial distribution using normal approximation is,

σ=npq

In the formula q=1p, n denotes number of trails, and p denotes probability of success.

Conditions for Continuity correction:

The continuity correction is used for converting the discrete random variable r denoting the number of success to continuous normal random variable x,

  • The value x is obtained by subtracting 0.5 from r when r is the left point for an interval. That is, x=r0.5.
  • The value x is obtained by adding 0.5 from r when r is the right point for an interval. That is, x=r+0.5.

Z score:

The number of standard deviations the original measurement x is from the value of mean μ is measured using the z-score or z value. The formula for z score is,

z=xμσ

In the formula, x is the raw score, μ is the mean and σ is the standard deviation.

Let r denotes the number of people having Blood type AB.

The number of trails is n=250, and the probability of success for each trail is p=0.03.

Checking conditions:

np=250(0.03)=7.5>5

nq=n(1p)=250(10.03)=250(0.97)=242.5>5

It can be observed that two of the conditions np>5, nq>5 are satisfied by the binomial experiment. It is appropriate to use normal approximation to the binomial.

The mean is,

μ=np=250(0.03)=7.5

The standard deviation is,

σ=npq=250(0.03)(10.03)=7.275=2.6972

The probability that 5 or more would have this blood type is,

P(r5)P(x50.5)=P(x7.52.69724.57.52.6972)=P(z1.11)=1P(z1.11)

Use the Appendix II: Tables, Table 5: Areas of a Standard Normal Distribution: to obtain probability less than –1.11.

  • Locate the value –1.1 in column z.
  • Locate the value 0.01 in top row.
  • The intersecting value of row and column is 0.1335.

The probability is,

P(r5)=1P(z1.11)=10.1335=0.8665

Hence, the probability that 5 or more would have this blood type is 0.8665.

(b)

To determine

Find the probability that between 5 and 10 would have this blood type.

(b)

Expert Solution
Check Mark

Answer to Problem 15CRP

The probability that between 5 and 10 would have this blood type is 0.7330.

Explanation of Solution

Calculation:

The probability that between 5 and 10 would have this blood type is,

P(5r10)P(50.5x10+0.5)=P(4.57.52.6972x7.52.697210.57.52.6972)=P(1.11z1.11)=P(z1.11)P(z1.11)

Use the Appendix II: Tables, Table 5: Areas of a Standard Normal Distribution: to obtain probability less than –1.11.

  • Locate the value –1.1 in column z.
  • Locate the value 0.01 in top row.
  • The intersecting value of row and column is 0.1335.

Use the Appendix II: Tables, Table 5: Areas of a Standard Normal Distribution: to obtain probability less than 1.11.

  • Locate the value 1.1 in column z.
  • Locate the value 0.01 in top row.
  • The intersecting value of row and column is 0.8665.

The probability is,

P(5r10)=P(z1.11)P(z1.11)=0.86650.1335=0.7330

Hence, the probability that between 5 and 10 would have this blood type is 0.7330.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A retail chain is interested in determining whether a digital video point-of-purchase (POP) display would stimulate higher sales for a brand advertised compared to the standard cardboard point-of-purchase display. To test this, a one-shot static group design experiment was conducted over a four-week period in 100 different stores. Fifty stores were randomly assigned to the control treatment (standard display) and the other 50 stores were randomly assigned to the experimental treatment (digital display). Compare the sales of the control group (standard POP) to the experimental group (digital POP). What were the average sales for the standard POP display (control group)? What were the sales for the digital display (experimental group)? What is the (mean) difference in sales between the experimental group and control group? List the null hypothesis being tested. Do you reject or retain the null hypothesis based on the results of the independent t-test? Was the difference between the…
Question 4 An article in Quality Progress (May 2011, pp. 42-48) describes the use of factorial experiments to improve a silver powder production process. This product is used in conductive pastes to manufacture a wide variety of products ranging from silicon wafers to elastic membrane switches. Powder density (g/cm²) and surface area (cm/g) are the two critical characteristics of this product. The experiments involved three factors: reaction temperature, ammonium percentage, stirring rate. Each of these factors had two levels, and the design was replicated twice. The design is shown in Table 3. A222222222222233 Stir Rate (RPM) Ammonium (%) Table 3: Silver Powder Experiment from Exercise 13.23 Temperature (°C) Density Surface Area 100 8 14.68 0.40 100 8 15.18 0.43 30 100 8 15.12 0.42 30 100 17.48 0.41 150 7.54 0.69 150 8 6.66 0.67 30 150 8 12.46 0.52 30 150 8 12.62 0.36 100 40 10.95 0.58 100 40 17.68 0.43 30 100 40 12.65 0.57 30 100 40 15.96 0.54 150 40 8.03 0.68 150 40 8.84 0.75 30 150…
- + ++ Table 2: Crack Experiment for Exercise 2 A B C D Treatment Combination (1) Replicate I II 7.037 6.376 14.707 15.219 |++++ 1 བྱ॰༤༠སྦྱོ སྦྱོཋཏྟཱུ a b ab 11.635 12.089 17.273 17.815 с ас 10.403 10.151 4.368 4.098 bc abc 9.360 9.253 13.440 12.923 d 8.561 8.951 ad 16.867 17.052 bd 13.876 13.658 abd 19.824 19.639 cd 11.846 12.337 acd 6.125 5.904 bcd 11.190 10.935 abcd 15.653 15.053 Question 3 Continuation of Exercise 2. One of the variables in the experiment described in Exercise 2, heat treatment method (C), is a categorical variable. Assume that the remaining factors are continuous. (a) Write two regression models for predicting crack length, one for each level of the heat treatment method variable. What differences, if any, do you notice in these two equations? (b) Generate appropriate response surface contour plots for the two regression models in part (a). (c) What set of conditions would you recommend for the factors A, B, and D if you use heat treatment method C = +? (d) Repeat…

Chapter 6 Solutions

Bundle: Understandable Statistics, Loose-leaf Version, 12th + WebAssign Printed Access Card for Brase/Brase's Understandable Statistics: Concepts and Methods, 12th Edition, Single-Term

Ch. 6.1 - Pain Management: Laser Therapy Effect of...Ch. 6.1 - Control Charts: Yellowstone National Park...Ch. 6.1 - Control Charts: Bank Loans Tri-County Bank is a...Ch. 6.1 - Control Charts: Motel Rooms The manager of Motel...Ch. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Uniform Distribution: Measurement Errors...Ch. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.2 - Statistical Literacy What does a standard score...Ch. 6.2 - Statistical Literacy Does a raw score less than...Ch. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Basic Computation: z Score and Raw Score A normal...Ch. 6.2 - Basic Computation: z Score and Raw Score A normal...Ch. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - z Scores: First Aid Course The college physical...Ch. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Normal Curve: Tree Rings Tree-ring dates were used...Ch. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 14PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 39PCh. 6.2 - Prob. 40PCh. 6.2 - Prob. 41PCh. 6.2 - Prob. 42PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 44PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 46PCh. 6.2 - Prob. 47PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 49PCh. 6.2 - Prob. 50PCh. 6.3 - Statistical Literacy Consider a normal...Ch. 6.3 - Statistical Literacy Suppose 5% of the area under...Ch. 6.3 - Prob. 3PCh. 6.3 - Critical Thinking: Normality Consider the...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Archaeology: Hopi Village Thickness measurements...Ch. 6.3 - Law Enforcement: Police Response Time Police...Ch. 6.3 - Prob. 29PCh. 6.3 - Guarantee: Watches Accrotime is a manufacturer of...Ch. 6.3 - Expand Your Knowledge: Estimating the Standard...Ch. 6.3 - Estimating the Standard Deviation: Refrigerator...Ch. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.3 - Insurance: Satellites A relay microchip in a...Ch. 6.3 - Convertion Center: Exhibition Show Attendance...Ch. 6.3 - Exhibition Shows: Inverse Normal Distribution Most...Ch. 6.3 - Budget: Maintenance The amount of money spent...Ch. 6.3 - Prob. 39PCh. 6.3 - Prob. 40PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.5 - Statistical Literacy What is the standard error of...Ch. 6.5 - Prob. 2PCh. 6.5 - Prob. 3PCh. 6.5 - Prob. 4PCh. 6.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 6.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 6.5 - Prob. 7PCh. 6.5 - Prob. 8PCh. 6.5 - Prob. 9PCh. 6.5 - Prob. 10PCh. 6.5 - Prob. 11PCh. 6.5 - Critical Thinking Suppose an x distribution has...Ch. 6.5 - Prob. 13PCh. 6.5 - Vital Statistics: Heights of Men The heights of...Ch. 6.5 - Prob. 15PCh. 6.5 - Medical: White Blood Cells Let x be a random...Ch. 6.5 - Wildlife: Deer Let x be a random variable that...Ch. 6.5 - Focus Problem: Impulse Buying Let x represent the...Ch. 6.5 - Finance: Templeton Funds Templeton World is a...Ch. 6.5 - Finance: European Growth Fund A European growth...Ch. 6.5 - Expand Your Knowledge: Totals Instead of Averages...Ch. 6.5 - Prob. 22PCh. 6.5 - Prob. 23PCh. 6.6 - Prob. 1PCh. 6.6 - Prob. 2PCh. 6.6 - Basic Computation: Normal Approximation to a...Ch. 6.6 - Basic Computation: Normal Approximation to a...Ch. 6.6 - Critical Thinking You need to compute the...Ch. 6.6 - Critical Thinking Consider a binomial experiment...Ch. 6.6 - In the following problems, check that it is...Ch. 6.6 - In the following problems, check that it is...Ch. 6.6 - Prob. 9PCh. 6.6 - Prob. 10PCh. 6.6 - Prob. 11PCh. 6.6 - Prob. 12PCh. 6.6 - Prob. 13PCh. 6.6 - In the following problems, check that it is...Ch. 6.6 - Prob. 15PCh. 6.6 - Prob. 17PCh. 6.6 - Prob. 18PCh. 6.6 - Prob. 19PCh. 6.6 - Basic Computation: p Distribution Suppose we have...Ch. 6.6 - Prob. 21PCh. 6 - Prob. 1CRPCh. 6 - Prob. 2CRPCh. 6 - Statistical Literacy Is a process in control if...Ch. 6 - Prob. 4CRPCh. 6 - Prob. 5CRPCh. 6 - Prob. 6CRPCh. 6 - Prob. 7CRPCh. 6 - Prob. 8CRPCh. 6 - Prob. 9CRPCh. 6 - Prob. 10CRPCh. 6 - Prob. 11CRPCh. 6 - Basic Computation: Probability Given that x is a...Ch. 6 - Prob. 13CRPCh. 6 - Prob. 14CRPCh. 6 - Prob. 15CRPCh. 6 - Prob. 16CRPCh. 6 - Prob. 17CRPCh. 6 - Prob. 18CRPCh. 6 - Prob. 19CRPCh. 6 - Prob. 20CRPCh. 6 - Prob. 21CRPCh. 6 - Prob. 22CRPCh. 6 - Prob. 23CRPCh. 6 - Prob. 24CRPCh. 6 - Prob. 25CRPCh. 6 - Prob. 26CRPCh. 6 - Break into small groups and discuss the following...Ch. 6 - Prob. 1LCCh. 6 - Prob. 2LCCh. 6 - Prob. 3LCCh. 6 - Prob. 4LCCh. 6 - Discuss each of the following topics in class or...Ch. 6 - Prob. 1UTCh. 6 - Prob. 1CURPCh. 6 - Prob. 2CURPCh. 6 - Prob. 3CURPCh. 6 - Prob. 4CURPCh. 6 - Prob. 5CURPCh. 6 - Prob. 6CURPCh. 6 - Prob. 7CURPCh. 6 - Prob. 8CURPCh. 6 - Prob. 9CURPCh. 6 - Prob. 10CURPCh. 6 - Prob. 11CURPCh. 6 - Prob. 12CURPCh. 6 - Prob. 13CURPCh. 6 - Prob. 14CURPCh. 6 - Prob. 15CURP
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Bayes' Theorem 1: Introduction and conditional probability; Author: Dr Nic's Maths and Stats;https://www.youtube.com/watch?v=lQVkXfJ-rpU;License: Standard YouTube License, CC-BY
What is Conditional Probability | Bayes Theorem | Conditional Probability Examples & Problems; Author: ACADGILD;https://www.youtube.com/watch?v=MxOny_1y2Q4;License: Standard YouTube License, CC-BY
Bayes' Theorem of Probability With Tree Diagrams & Venn Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=OByl4RJxnKA;License: Standard YouTube License, CC-BY
Bayes' Theorem - The Simplest Case; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XQoLVl31ZfQ;License: Standard Youtube License