MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
5th Edition
ISBN: 9781305110250
Author: MOAVENI, Saeed
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 13P

(a)

To determine

Find the given equation is dimensionally homogenous or not.

(a)

Expert Solution
Check Mark

Answer to Problem 13P

The given equation is dimensionally homogenous and it is proved.

Explanation of Solution

Given data:

The equation is,

F(x2x1)=12mV2212mV12 (1)

Here,

F is the force in N,

m is the mass in kg,

x1,x2 is the distance in m, and

V1,V2 is the velocity in ms,

Formula used:

The SI unit expression in terms of base units as follows,

N=kgms2

Calculation:

Find the given equation is dimensionally homogenous or not.

Substitute the units N for F, kg for m, m for x1, m for x2, ms for V1 and ms for V2 in equation (1).

N(mm)=12(kg)(ms)212(kg)(ms)2Nm=12(kgm2s2kgm2s2)Nm=12kgm2s2 (2)

Here,

12 is constant (unitless).

Equation (2) becomes,

Nm=(kgms2)m (3)

Substitute the unit kgms2 for N in equation (3).

Nm=Nm (4)

From equation (4), Left-hand side (LHS) is equal to Right-hand side (RHS). Thus, the given equation is dimensionally homogenous and it is proved.

Conclusion:

Hence, the given equation is dimensionally homogenous and it is proved.

(b)

To determine

Find the given equation is dimensionally homogenous or not.

(b)

Expert Solution
Check Mark

Answer to Problem 13P

The given equation is not dimensionally homogenous and it is proved.

Explanation of Solution

Given data:

The equation is,

F=12mV2212mV12 (5)

Here,

F is the force in N,

m is the mass in kg, and

V1,V2 is the velocity in ms.

Formula used:

The SI unit expression in terms of base units as follows,

N=kgms2

Calculation:

Find the given equation is dimensionally homogenous or not.

Substitute the units N for F, kg for m, ms for V1 and ms for V2 in equation (5).

N=12(kg)(ms)212(kg)(ms)2N=12(kgm2s2kgm2s2)N=12kgm2s2 (6)

Here,

12 is constant (unitless).

Equation (6) becomes,

N=(kgms2)m (7)

Substitute the unit kgms2 for N in equation (7).

N=Nm (8)

From equation (8), Left-hand side (LHS) is not equal to Right-hand side (RHS). Thus, the given equation is not dimensionally homogenous and it is proved.

Conclusion:

Hence, the given equation is not dimensionally homogenous and it is proved.

(c)

To determine

Find the given equation is dimensionally homogenous or not.

(c)

Expert Solution
Check Mark

Answer to Problem 13P

The given equation is not dimensionally homogenous and it is proved.

Explanation of Solution

Given data:

The equation is,

F(V2V1)=12mx2212mx12 (9)

Here,

F is the force in N,

m is the mass in kg,

x1,x2 is the distance in m, and

V1,V2 is the velocity in ms,

Formula used:

The SI unit expression in terms of base units as follows,

N=kgms2

Calculation:

Find the given equation is dimensionally homogenous or not.

Substitute the units N for F, kg for m, m for x1, m for x2, ms for V1 and ms for V2 in equation (9).

N(msms)=12(kg)(m)212(kg)(m)2Nms=12(kgm2kgm2)Nms=12kgm2 (10)

Here,

12 is constant (unitless).

Equation (10) becomes,

Nms=kgm2 (11)

Substitute the unit kgms2 for N in equation (11).

(kgms2)ms=kgm2kgm2s3=kgm2 (12)

From equation (12), Left-hand side (LHS) is not equal to Right-hand side (RHS). Thus, the given equation is not dimensionally homogenous and it is proved.

Conclusion:

Hence, the given equation is not dimensionally homogenous and it is proved.

(d)

To determine

Find the given equation is dimensionally homogenous or not.

(d)

Expert Solution
Check Mark

Answer to Problem 13P

The given equation is dimensionally homogenous and it is proved.

Explanation of Solution

Given data:

The equation is,

F(t2t1)=mV2mV1 (13)

Here,

F is the force in N,

m is the mass in kg,

t1,t2 is the time in s, and

V1,V2 is the velocity in ms,

Formula used:

The SI unit expression in terms of base units as follows,

N=kgms2

Calculation:

Find the given equation is dimensionally homogenous or not.

Substitute the units N for F, kg for m, s for t1, s for t2, ms for V1 and ms for V2 in equation (13).

N(ss)=(kg)(ms)(kg)(ms)Ns=kgmskgmsNs=kgms (14)

Substitute the unit kgms2 for N in equation (14).

Ns=kgms(kgms2)s=kgms

kgms=kgms (15)

From equation (15), Left-hand side (LHS) is equal to Right-hand side (RHS). Thus, the given equation is dimensionally homogenous and it is proved.

Conclusion:

Hence, the given equation is dimensionally homogenous and it is proved.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I need help finding: -The axial deflection pipe in inches. -The lateral deflection of the beam in inches -The total deflection of the beam like structure in inches ?
A 2.0 m wide strip foundation carries a wall load of 350 kN/m in a clayey soil where y = 17 kN/m³, c' = 5.0 kN/m² and 23°. The foundation depth is 1.5 m. For o' = 23°: Nc = 18.05; N = 8.66; N = 8.20. Determine the factor of safety using the equation below. 1 qu = c' NcFcs Fed Fci +qNqFqs FqdFqi + ½ BN F√s 1 2 (Enter your answer to three significant figures.) s Fyd Fi FS =
1.2 m BX B 70 kN.m y = 16 kN/m³ c' = 0 6'-30° Water table Ysat 19 kN/m³ c' 0 &' = 30° A square foundation is shown in the figure above. Use FS = 6, and determine the size of the foundation. Use the Prakash and Saran theory (see equation and figures below). Suppose that F = 450 kN. Qu = BL BL[c′Nc(e)Fcs(e) + qNg(e)Fcs(e) + · 1 YBN(e) F 2 7(e) Fra(e)] (Enter your answer to two significant figures.) B: m Na(e) 60 40- 20- e/B=0 0.1 0.2 0.3 .0.4 0 0 10 20 30 40 Friction angle, ' (deg) Figure 1 Variation of Na(e) with o' Ny(e) 60 40 20 e/B=0 0.3 0.1 0.2 0.4 0 0 10 20 30 40 Friction angle, ' (deg) Figure 2 Variation of Nye) with o'

Chapter 6 Solutions

MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,