Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 13CQ
A popular carnival ride has passengers stand with their backs against the inside wall of a cylinder. As the cylinder begins to spin, the passengers feel as if they are being pushed against the wall. Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a batter in a baseball game, misses a fast moving ball. because of the miss, it results for him to spin around. explain why.
A cyclist is riding a bicycle without holding the handle. He wishes to turn to one side. Explain, How it can be achieved?
Water parks often include a log rolling area, in which participants try to stay upright while balancing on top of floating logs that are free to rotate in the water. If you’ve tried this, you know that the larger the diameter of the log, the easier it is to balance on top. Explain why this is so.
Chapter 6 Solutions
Physics (5th Edition)
Ch. 6.1 - A block rests on a rough, horizontal surface, as...Ch. 6.2 - When a mass is attached to a certain spring, the...Ch. 6.3 - Suppose the tension in the clothesline in Quick...Ch. 6.4 - Three boxes are connected by ropes and pulled...Ch. 6.5 - A system consists of an object with mass m and...Ch. 6 - A clothesline always sags a little, even if...Ch. 6 - In the Jurassic Park sequel, The Lost World, a man...Ch. 6 - When a traffic accident is investigated, it is...Ch. 6 - In a car with rear-wheel drive, the maximum...Ch. 6 - A train typically requires a much greater distance...
Ch. 6 - Give some everyday examples of situations in which...Ch. 6 - At the local farm, you buy a flat of strawberries...Ch. 6 - It is possible to spin a bucket of water in a...Ch. 6 - Water sprays off a rapidly turning bicycle wheel....Ch. 6 - Can an object be in translational equilibrium if...Ch. 6 - Prob. 11CQCh. 6 - The gravitational attraction of the Earth is only...Ch. 6 - A popular carnival ride has passengers stand with...Ch. 6 - Referring to Question 13, after the cylinder...Ch. 6 - Your car is stuck on an icy side street. Some...Ch. 6 - The parking brake on a car causes the rear wheels...Ch. 6 - BIO The foot of your average gecko is covered with...Ch. 6 - Discuss the physics involved in the spin cycle of...Ch. 6 - The gas pedal and the brake pedal are capable of...Ch. 6 - In the movie 2001: A Space Odyssey, a rotating...Ch. 6 - When rounding a corner on a bicycle or a...Ch. 6 - Predict/Explain You push two identical bricks...Ch. 6 - Predict/Explain Two drivers traveling side-by-side...Ch. 6 - A 1.8-kg block slides on a horizontal surface with...Ch. 6 - A child goes down a playground slide with an...Ch. 6 - What is the minimum horizontal force F needed to...Ch. 6 - What is the minimum horizontal force F needed to...Ch. 6 - The three identical boxes shown in Figure 6-33...Ch. 6 - To move a large crate across a rough floor, you...Ch. 6 - Predict/Calculate A 37-kg crate is placed on an...Ch. 6 - Coffee To Go A person places a cup of coffee on...Ch. 6 - A mug rests on an inclined surface, as shown in...Ch. 6 - Predict/Calculate Force Times Distance At the...Ch. 6 - Prob. 13PCECh. 6 - A certain spring has a force constant k. (a) If...Ch. 6 - A certain spring has a force constant k. (a) If...Ch. 6 - Pulling up on a rope you lift a 7.27-kg bucket of...Ch. 6 - When a 9.09-kg mass is placed on top of a vertical...Ch. 6 - Predict/Calculate A backpack full of books...Ch. 6 - Two springs, with force constants k1= 150N/m and...Ch. 6 - Predict/Calculate Illinois Jones is being pulled...Ch. 6 - Predict/Calculate A spring with a force constant...Ch. 6 - A spring is suspended vertically from the ceiling...Ch. 6 - Mechanical Advantage The pulley system shown in...Ch. 6 - Pulling the string on a bow back with a force of...Ch. 6 - In Figure 6-42 we see two blocks connected by a...Ch. 6 - BIO Traction After a skiing accident, your leg is...Ch. 6 - Two blocks are connected by a string, as shown in...Ch. 6 - Predict/Calculate The system shown in Figure 6-45...Ch. 6 - Predict/Explain (a) Referring to the hanging...Ch. 6 - BIO Spiderweb Forces An orb-weaver spider sits in...Ch. 6 - A 0.15-kg ball is placed in a shallow wedge with...Ch. 6 - Predict/Calculate A picture hangs on the wall...Ch. 6 - Predict/Calculate You want to nail a 1.6-kg board...Ch. 6 - Prob. 34PCECh. 6 - In Example 6-13 (Connected Blocks), suppose m1 and...Ch. 6 - Predict/Explain Suppose m1 and m2 in Example 6-14...Ch. 6 - Three boxes of masses m, 2m, and 3m are connected...Ch. 6 - Find the acceleration of the masses shown in...Ch. 6 - Predict/Calculate (a) If the hanging mass m3 in...Ch. 6 - Two blocks are connected by a string, as shown in...Ch. 6 - Predict/Calculate A 3 50-kg block on a smooth...Ch. 6 - Predict/Calculate A 7.7-N force pulls horizontally...Ch. 6 - Predict/Calculate (a) Find the magnitude of the...Ch. 6 - A car drives with constant speed on an elliptical...Ch. 6 - A puck attached to a string undergoes circular...Ch. 6 - BIO Bubble Net Fishing Humpback whales sometimes...Ch. 6 - When you take your 1900-kg car out for a spin, you...Ch. 6 - BIO A Human Centrifuge To test the effects of high...Ch. 6 - A car goes around a curve on a road that is banked...Ch. 6 - Clearview Screen Large ships often have circular...Ch. 6 - Predict/Calculate (a) As you ride on a Ferris...Ch. 6 - Driving in your car with a constant speed of v =...Ch. 6 - CE If you weigh yourself on a bathroom scale at...Ch. 6 - CE BIO Maneuvering a Jet Humans lose consciousness...Ch. 6 - CE BIO Gravitropism As plants grow, they tend to...Ch. 6 - BIO Human-Powered Centrifuge One of the hazards of...Ch. 6 - Predict/Calculate A 9 3-kg box slides across the...Ch. 6 - A child goes down a playground slide that is...Ch. 6 - Spin-Dry Dragonflies Some dragonflies splash down...Ch. 6 - The da Vinci Code Leonardo da Vinci (1452-1519) is...Ch. 6 - A 4 5-kg sled is pulled with constant speed across...Ch. 6 - A 0 045-kg golf ball hangs by a string from the...Ch. 6 - A physics textbook weighing 22 N rests on a desk....Ch. 6 - Predict/Calculate The blocks shown in Figure 6-64...Ch. 6 - A Conical Pendulum A 0 075-kg toy airplane is tied...Ch. 6 - A tugboat tows a barge at constant speed with a...Ch. 6 - Predict/Calculate Two blocks, stacked one on top...Ch. 6 - Predict/Calculate In a daring rescue by helicopter...Ch. 6 - Predict/Calculate A light spring with a fore...Ch. 6 - Predict/Calculate The blocks in Figure 6-69 have...Ch. 6 - Predict/Calculate Playing a Violin The tension in...Ch. 6 - Predict/Calculate A 9 8-kg monkey hangs from a...Ch. 6 - As your plane circles an airport, it moves in a...Ch. 6 - At a playground, a 22-kg child sits on a spinning...Ch. 6 - A 2.0-kg box rests on a plank that is inclined at...Ch. 6 - A wood block of mass m rests on a larger wood...Ch. 6 - A hockey puck of mass m is attached to a string...Ch. 6 - Predict/Calculate A popular ride at amusement...Ch. 6 - A Conveyor Belt A box is placed on a conveyor belt...Ch. 6 - As part of a circus act, a person drives a...Ch. 6 - On the straight-line segment II in Figure 6-76 (b)...Ch. 6 - 82. Rank the straight segments I, II, and III in...Ch. 6 - In use on a typical human nose, the end-to-end...Ch. 6 - Predict/Calculate Referring to Example 6-3 Suppose...Ch. 6 - Predict/Calculate Referring to Example 6-3 The...Ch. 6 - Referring to Example 6-13 Suppose that the mass on...Ch. 6 - Referring to Example 6-15 (a) At what speed will...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A tightly stretched “high wire” is 36 m long. It sags 2.1 m when a 60.0-kg tightrope walker stands at its cente...
Physics for Scientists and Engineers with Modern Physics
48. * An impulse of stops your head during a car collision. (a) A crash test dummy’s head stops in 0.020 s, wh...
College Physics
4. A magnetic force acting on a beam of electrons can change
(a) only the direction of the beam.
(b) only the e...
Conceptual Physical Science (6th Edition)
A 560-g squirrel with a surface area of 930 cm2 falls from a 5.0-m tree to the ground. Estimate its terminal ve...
College Physics
16.70 CP A police siren of frequency fsiren is attached to a vibrating platform. The platform and siren oscilla...
University Physics (14th Edition)
The structure present in all aromatic compounds.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? A mischievous child goes to an amusement park with his family. On one ride, after a severe scolding from his mother, he slips out of his seat and climbs to the top of the rides structure, which is shaped like a cone with its axis vertical and its sloped sides making an angle of = 20.0 with the horizontal as shown in Figure P6.32. This part of the structure rotates about the vertical central axis when the ride operates. The child sits on the sloped surface at a point d = 5.32 m down the sloped side from the center of the cone and pouts. The coefficient of static friction between the boy and the cone is 0.700. The ride operator does not notice that the child has slipped away from his seat and so continues to operate the ride. As a result, the sitting, pouting boy rotates in a circular path at a speed of 3.75 m/s. Figure P6.32arrow_forwardCasting of molten metal is important in many industrial processes. Centrifugal casting is used for manufacturing pipes, bearings, and many other structures. A cylindrical enclosure is rotated rapidly and steadily about a horizontal axis, as in Figure P7.62. Molten metal is poured into the rotating cylinder and then cooled, forming the finished product. Turning the cylinder at a high rotation rate forces the solidifying metal strongly to the outside. Any bubbles are displaced toward the axis so that unwanted voids will not be present in the casting. Suppose a copper sleeve of inner radius 2.10 cm and outer radius 2.20 cm is to be cast. To eliminate bubbles and give high structural integrity, the centripetal acceleration of each bit of metal should be 100g. What rate of rotation is required? State the answer in revolutions per minute. Figure P7.62arrow_forwardArtificial gravity is produced in a space station by rotating it, so it is a noninertial reference frame. The rotation means that there must be a centripetal force exerted on the occupants: this centripetal force is exerted by the walls of the station. The space station in Arthur C. Clarkes 2001: A Space Odyssey is in the shape of a four-spoked wheel with a diameter of 155 m. If the space station rotates at a rate of 2.40 revolutions per minute, what is the magnitude of the artificial gravitational acceleration provided to a space tourist walking on the inner wall of the station?arrow_forward
- A ride at a carnival has four spokes to which pods are attached that can hold two people. The spokes are each 15 m long and are attached to a central axis. Each spoke has mass 200.0 kg, and the pods each have mass 100.0 kg. If the ride spins at 0.2 rev/s with each pod containing two 50.0-kg children, what is the new spin rate if all the children jump off the ride?arrow_forwardA car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.70 m/s2. The car makes it one-quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and the track.arrow_forwardConstruct Your Own Problem Consider an amusement park ride in which participants are rotated about a vertical axis in a cylinder with vertical walls. Once the angular velocity reaches its full value, the floor drops away and friction between the walls and the riders prevents them from sliding down. Construct a problem in which you calculate the necessary angular velocity that assures the riders will not slide down the wall. Include a free body diagram of a single rider. Among the variables to consider are the radius of the cylinder and the coefficients of friction between the riders' clothing and the wall.arrow_forward
- Two children (m = 30.0 kg each) stand opposite each otheron the edge of a merry-go-round. The merry-go-round, whichhas a mass of 1.80 102 kg and a radius of 1.5 m, is spinningat a constant rate of 0.50 rev/s. Treat the two children and themerry-go-round as a system. a. Calculate the angular momentum of the system, treating each child as a particle. b. Calculatethe total kinetic energy of the system. c. Both children walkhalf the distance toward the center of the merry-go-round. Calculate the final angular speed of the system.arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel (Fig. P11.28, page 306) has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g. A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a lest to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening. Figure P11.28arrow_forwardBIO The arm in Figure P10.35 weighs 41.5 N. The gravitational force on the arm acts through point A. Determine the magnitudes of the tension force F1 in the deltoid muscle and the force Fs exerted by the shoulder on the humerus (upper-arm bone) to hold the arm in the position shown. Figure P10.35arrow_forward
- You are working during your summer break as an amusement park ride operator. The ride you are controlling consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away (Fig. P6.7). The coefficient of static friction between a person of mass m and the wall is s, and the radius of the cylinder is R. You are rotating the ride with an angular speed suggested by your supervisor. (a) Suppose a very heavy person enters the ride. Do you need to increase the angular speed so that this person will not slide down the wall? (b) Suppose someone enters the ride wearing a very slippery satin workout outfit. In this case, do you need to increase the angular speed so that this person will not slide down the wall? Figure P6.7arrow_forwardRepeat Example 10.15 in which the disk originally spins clockwise at 1000 rpm and has a radius of 1.50 cm.arrow_forwardA cat usually lands on its feet regardless of the position from which it is dropped. A slow-motion film of a cat falling shows that the upper half of its body twists in one direction while the lower half twists in the opposite direction. (See Fig. CQ8.14.) Why does this type of rotation occur? Figure CQ8.14arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY