Concept explainers
To Find: The resultant gravitational force on each particle.
Explanation of Solution
Given:
Mass of each particle,
Distance between particles,
Formula used:
The gravitational force between two bodies having mass m and M , d distance away is:
G is the gravitational constant.
Calculation:
Free body diagram:
Gravitational force on
The gravitational force on
Gravitational force on
Conclusion:
Thus, resultant gravitational force on
Want to see more full solutions like this?
Chapter 6 Solutions
Physics Fundamentals
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forward
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forward(a) Find the magnitude of the gravitational force between a planet with mass 7.50 1024 kg and its moon, with mass 2.70 1022 kg, if the average distance between their centers is 2.80 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the acceleration of the planet towards the moon?arrow_forwardThe gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forward
- The drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles are mA - 320 kg, mg - 551 kg, and mc - 138 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign, acting on (a) particle A, (b) particle B, and (c) particle C.arrow_forwardTwo spherical masses m1 = 4.10 g and m2 = 3.90 g are located at coordinates (-5.00, -3.75) cm and (-3.00, 4.00) cm, respectively. %3D (a) What is the gravitational field at the origin? Express your answer in vector form. m/s2 (b) What is the force experienced by a mass m3 = 8.00 g placed at the origin? Express your answer in vector form. Fnet, g : (c) What is the gravitational potential energy of the three-mass system?arrow_forwarda square of edge length 20.0 cm is formed by four spheres of masses m1 = 5.00 g, m2 = 3.00 g, m3 = 1.00 g, and m4 = 5.00 g. In unit-vector notation, what is the net gravitational force from them on a central sphere with mass m5 = 2.50 g?arrow_forward
- In the figure, three 9.74 kg spheres are located at distances d₁ = 0.953 m, and d₂ = 0.215 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and C? (a) Number i (b) Number i dr B Units Units î ✪arrow_forwardIn the figure, three 8.07 kg spheres are located at distances d = 0.115 m, and d, = 0.456 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and %3D %3D C?arrow_forwardThree particles sit on the vertices of an equilateral triangle with sides of d = 5.00 cm. Particle 1 has a mass of 25.0 kg, particle 2 has a mass of 20.0 kg, and particle 3 has a mass of 30.0 kg. What is the direction of the net gravitational force on mass 1?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning