a)
Interpretation:
R and S configuration is to be assigned to the following molecules.
Concept introduction:
Rule 1:
a) Higher
b) An atom node duplicated closer to the root ranks higher than one duplicated further.
Rule 2: Higher
Rule 3: Z precedes E and this precedes nonstereogenic (nst) double bonds.
Rule 4:
a) Chiral stereogenic units precede pseudoasymmetric stereogenic units and these precede nonstereogenic units (R = S > r = s > nst).
b) When two ligards have different descriptor pairs, the one with the first chosen like descriptor pairs has priority over the one with a corresponding unlike descriptor pairs.
c) r precedes s.
Rule 5: An atom or group with descriptor R has priority over its enantiomorph S.

Answer to Problem 43AP
R configuration
Explanation of Solution
By ranking the substituent in the following examples based on Cahn-Ingold Prelog rules,
R and S configuration can be assigned to the following molecules.
1. Determine the priorities of the four attached groups from highest (1) to lowest (4).
This is the same as in all methods.
2. Draw the steering wheel. Draw a curved arrow around from 1 to 2 to 3 and back to 1 and note which direction this arrow goes, clockwise (cw) or counterclockwise (ccw).
This distinct feature of this method is that you make a full circle, from 1 to 2 to 3 to 1, completely ignoring the lowest priority group.
3a. If the lowest priority group is behind the steering wheel, then this is the standard orientation: clockwise is R and counter-clockwise is S. (Turning the steering wheel clockwise turns the car to the right-R).
Note that Fischer projections are best depicted as bow ties with horizontal groups coming out and vertical groups back from the central carbon atom.
3b. If the lowest priority group is in front of this curved arrow, then the assignment is reversed: clockwise is S and counterclockwise is R. (Basically, you are looking at the steering wheel from the perspective of the engine compartment!)
The stereochemical configuration of a carbon atom can be specified as either R (rectus) or S (sinister) by using the Cahn-Ingold-Prelog sequence rules. First assign priorities to the four substituents on the chiral carbon atom, and then orient the molecule so that the lowest-priority group points directly back. If a curved arrow drawn in the direction of decreasing priority (1 → 2 → 3) for the remaining three groups is clockwise, the chirality center has the R configuration. If the direction is counterclockwise, the chirality center has the S configuration.
b)
Interpretation:
R and S configuration is to be assigned to the following molecules.
Concept introduction:
Rule 1:
a) Higher atomic number precedes lower.
b) An atom node duplicated closer to the root ranks higher than one duplicated further.
Rule 2: Higher atomic mass number precedes lower.
Rule 3: Z precedes E and this precedes nonstereogenic (nst) double bonds.
Rule 4:
a) Chiral stereogenic units precede pseudoasymmetric stereogenic units and these precede nonstereogenic units (R = S > r = s > nst).
b) When two ligards have different descriptor pairs, the one with the first chosen like descriptor pairs has priority over the one with a corresponding unlike descriptor pairs.
c) r precedes s.
Rule 5: An atom or group with descriptor R has priority over its enantiomorph S.

Answer to Problem 43AP
S configuration
Explanation of Solution
By ranking the substituent in the following examples based on Cahn-Ingold Prelog rules,
R and S configuration can be assigned to the following molecules.
1. Determine the priorities of the four attached groups from highest (1) to lowest (4).
This is the same as in all methods.
2. Draw the steering wheel. Draw a curved arrow around from 1 to 2 to 3 and back to 1 and note which direction this arrow goes, clockwise (cw) or counterclockwise (ccw).
This distinct feature of this method is that you make a full circle, from 1 to 2 to 3 to 1, completely ignoring the lowest priority group.
3a. If the lowest priority group is behind the steering wheel, then this is the standard orientation: clockwise is R and counter-clockwise is S. (Turning the steering wheel clockwise turns the car to the right-R).
Note that Fischer projections are best depicted as bow ties with horizontal groups coming out and vertical groups back from the central carbon atom.
3b. If the lowest priority group is in front of this curved arrow, then the assignment is reversed: clockwise is S and counterclockwise is R. (Basically, you are looking at the steering wheel from the perspective of the engine compartment!)
The stereochemical configuration of a carbon atom can be specified as either R (rectus) or S (sinister) by using the Cahn-Ingold-Prelog sequence rules. First assign priorities to the four substituents on the chiral carbon atom, and then orient the molecule so that the lowest-priority group points directly back. If a curved arrow drawn in the direction of decreasing priority (1 → 2 → 3) for the remaining three groups is clockwise, the chirality center has the R configuration. If the direction is counterclockwise, the chirality center has the S configuration.
c)
Interpretation:
R and S configuration is to be assigned to the following molecules.
Concept introduction:
Rule 1:
a) Higher atomic number precedes lower.
b) An atom node duplicated closer to the root ranks higher than one duplicated further.
Rule 2: Higher atomic mass number precedes lower.
Rule 3: Z precedes E and this precedes nonstereogenic (nst) double bonds.
Rule 4:
a) Chiral stereogenic units precede pseudoasymmetric stereogenic units and these precede nonstereogenic units (R = S > r = s > nst).
b) When two ligards have different descriptor pairs, the one with the first chosen like descriptor pairs has priority over the one with a corresponding unlike descriptor pairs.
c) r precedes s.
Rule 5: An atom or group with descriptor R has priority over its enantiomorph S.

Answer to Problem 43AP
S configuration
Explanation of Solution
By ranking the substituent in the following examples based on Cahn-Ingold Prelog rules,
R and S configuration can be assigned to the following molecules.
1. Determine the priorities of the four attached groups from highest (1) to lowest (4).
This is the same as in all methods.
2. Draw the steering wheel. Draw a curved arrow around from 1 to 2 to 3 and back to 1 and note which direction this arrow goes, clockwise (cw) or counterclockwise (ccw).
This distinct feature of this method is that you make a full circle, from 1 to 2 to 3 to 1, completely ignoring the lowest priority group.
3a. If the lowest priority group is behind the steering wheel, then this is the standard orientation: clockwise is R and counter-clockwise is S. (Turning the steering wheel clockwise turns the car to the right-R).
Note that Fischer projections are best depicted as bow ties with horizontal groups coming out and vertical groups back from the central carbon atom.
3b. If the lowest priority group is in front of this curved arrow, then the assignment is reversed: clockwise is S and counterclockwise is R. (Basically, you are looking at the steering wheel from the perspective of the engine compartment!)
The stereochemical configuration of a carbon atom can be specified as either R (rectus) or S (sinister) by using the Cahn-Ingold-Prelog sequence rules. First assign priorities to the four substituents on the chiral carbon atom, and then orient the molecule so that the lowest-priority group points directly back. If a curved arrow drawn in the direction of decreasing priority (1 → 2 → 3) for the remaining three groups is clockwise, the chirality center has the R configuration. If the direction is counterclockwise, the chirality center has the S configuration.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK ORGANIC CHEMISTRY
- Select the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forwardb. H3C CH3 H3O+ ✓ H OHarrow_forward
- 2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forwardIdentify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forward
- Instructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forwardе. Д CH3 D*, D20arrow_forwardC. NaOMe, Br Brarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning



