EBK ELECTRIC MOTOR CONTROL
10th Edition
ISBN: 9780100784598
Author: Herman
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 59, Problem 1SQ
To determine
Write the characteristics of a person who shall operate and maintain electrical machinery.
Expert Solution & Answer
Explanation of Solution
Discussion:
The electrical machinery is usually operated with high voltage and the rotational machines are rotated with high speeds. Therefore, it is required to take much care to install, maintain, and operate the electrical machinery. The improper maintenance of electrical machinery leads to serious and fatal injuries to the person who maintains the machinery.
The characteristics that are required to a person to maintain and operate the electrical machinery are written as follows:
- The person must be a skilled and qualified electrician.
- The person must have a safety conscious.
- The person must be an experienced electrician.
Conclusion:
Thus, the characteristics of a person to operate and maintain electrical machinery are listed.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q2. For the transformer shown in Fig. 1.
A. Plot the winding connection for the transformer and justify your answer.
(4M)
B. If the transformer is adopted in 12 pulse diode rectifier, where two-series connected
bridge rectifiers are used to supply a highly inductive load with 100 A. (i) Select a
suitable turns ratio for the transformer (ii) Plot the line current of each winding (
secondary + primary) showing the current magnitude at each interval (iii) Use Fourier
Page 1 of 3
analysis to obtain the Fourier series of all line currents then calculate the THD of the
input current.
(8=0°
(16M)
(Y) = 30°
Fig. 1
P. I v
I
Q2. For the transformer shown in Fig.1,
A. Find the phase shift between the primary and star-connected secondary.
B. If the transformer is adopted in a 12-pulse diode rectifier, where a two-series
connected bridge rectifier is connected in series and supplies a highly inductive load
(i) Select a suitable turns ratio for the transformer
(ii) Plot the line current of each winding (secondary + primary).
(iii)Using Fourier analysis to obtain the Fourier series of all line currents, then calculate
the THD of the input current.
(iv) Draw the output voltage of the first and second rectifiers and give the relation of
the total output voltage.
N2
B
C
Fig. 1
N3
a
Q2.A. It is planned to use the transformer shown in Fig. 1, a 12-pulse rectifier. Each
secondary is connected to three phase controlled bridge rectifier. The two rectifiers
are connected in series to supply a highly inductive load.
1. Based on the phasor relationship between different windings. If suitable turns
ratio is selected, is it possible to use this transformer to produce 12 pulse
output voltage? Show the reason behind your answer.
2. Assuming this arrangement is possible to be used in 12-pulse rectifier, draw
the output voltage of the 1st and 2nd rectifier and give the relation of the total
output voltage.
3. Use the Fourier analysis to show the harmonics in all line currents of the
transformer.
A
B
in
C
Fig. 1
b
la
a
2
b.
Chapter 59 Solutions
EBK ELECTRIC MOTOR CONTROL
Ch. 59 - Prob. 1SQCh. 59 - Why should the motor be run for a period of time...Ch. 59 - What may occur if a jumper is placed across coil M...Ch. 59 - In what position do ball-bearing motors function?Ch. 59 - Motors will operate satisfactorily at what percent...Ch. 59 - What basic sensory faculties should a...Ch. 59 - What is an orderly step-by-step procedure in...Ch. 59 - What might be a hazard if a motor is started in...Ch. 59 - Prob. 9SQCh. 59 - What are the probable causes of a noisy magnet?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4. Give the reasons for the following 1. In AC machines drives, the frequency modulation index should be integer regardless the value of switching frequency. 2. Variable de link voltage is adopted in inverter operating in square wave operation mode 3. Practical values of switch utilization factor is different from theoretical values 4. In three-phase inverter with my is odd and multiple of 3, the even and tripplen harmonics are zero. 5. The PSC-PWM is attractive for the modular multilevel converterarrow_forwardQ6.B. Answer the following questions 1. Does the steady state load current in a half bridge inverter has an average value and what is the adverse effect of the average current component? 2. Can the LPF of single phase bridge inverter based on bipolar PWM be used with single phase bridge inverter based on unipolar PWM? Explainarrow_forwardQ3. Answer the following questions T 1. Compared to the bipolar voltage-switching scheme, the unipolar scheme is "effectively" doubling the switching frequency. Explain the statement's meaning and how this effect can be generated. 2. What are the properties of a good power switch, and what are its basic ratings? 3. What are the objectives of any PWM strategy for three-phase inverters? 4. Why is the current control PWM rectifier in the dq rotating reference frame preferred over the abc reference frame? 5. Define the switch utilization factor. Show how this factor can be calculated for different single-phase inverters for square wave operation mode at the maximum rated output.arrow_forward
- Q1.B. Explain output control by voltage cancellation in a single-phase inverter. What are the advantages over square wave operation?arrow_forwardQ3.B. What is the problem of three-phase HW rectifier and how can be resolved?arrow_forwardQ3-consider the unity feedback system shown below: a.Evaluate general formula of ess? b.Calculate the steady state error of the closed loop system due to R(s) unit step input, D(s)=0]? c.Calculate the steady-state response when D(s) and ramp and R(s)=0?arrow_forward
- - = 400KHZ. Q1. In a Boost converter, L = 25 μH, Vin = 12 V, D = 0.4, P = 25 W, and fs (i) if the output load is changing. Calculate the critical value of the output load P,below which the converter will enter the discontinuous conduction mode of operation. Assume the total turn-on loss is equal to 2 W. (ii) Assuming the input voltage fluctuates from 10 V to 14 V and the output voltage is regulated to 20 V. Calculate the critical value of the inductance L below which this Boost converter will enter the discontinuous conduction mode of operation at P = 5 W. (iii) Draw the waveforms for inductor voltage, inductor current, and the capacitor current for this Boost converter at the output load that causes it to operate at the border of continuous and discontinuous modes. vd tow 77 N₂ AT 22 1-1arrow_forwardDon't use ai to answer I will report you answerarrow_forwardAnswer the following questions: 1- Write radiation resistance (R.) equation for infinitesimal dipole antenna. 2- Write the angle expression form of first null beam width (FNBW) for 2/2 dipole. 3- Define the Directivity of antenna. 4- Write radar cross section equation. 5- Write the input impedance (Z) expression of lossless transmission line.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,